В арсенале APT-группы BlueNoroff появился вредонос, совместимый с macOS

В арсенале APT-группы BlueNoroff появился вредонос, совместимый с macOS

В арсенале APT-группы BlueNoroff появился вредонос, совместимый с macOS

Специалисты Jamf обнаружили нового macOS-зловреда, способного подключаться к C2-серверу для загрузки и запуска пейлоада. Проведенный в ИБ-компании анализ позволили связать RustBucket, как его нарекли, с атаками BlueNoroff.

Названную APT-группу многие считают подразделением Lazarus, которая, кстати, давно освоила macOS-платформу. В данном случае атака проводится в три этапа, и для запуска цепочки заражения злоумышленник должен с помощью социальной инженерии заставить свою цель отключить проверку Gatekeeper.

Вначале на машину загружается неподписанное AppleScript-приложение, именуемое Internal PDF Viewer (уровень детектирования на VirusTotal16/64 по состоянию на 25 апреля). В его задачи входит загрузка с удаленного сервера пейлоада второго этапа в виде ZIP-файла.

Этот вредонос тоже называется Internal PDF Viewer (20/63 на 25 апреля), но написан на Objective-C и на первый взгляд представляет собой базовое приложение для просмотра PDF-файлов. Иллюзию легитимности усиливает специально созданная цифровая подпись, но подлог выдает ущербная функциональность: в программе работают только поиск и загрузка документов.

Для запуска следующей стадии атаки необходимо, чтобы жертва загрузила и открыла (штатными средствами macOS) определенный PDF-файл. Один такой вредоносный документ исследователям удалось найти: он содержал текст, позаимствованный с сайта венчурной компании, в который авторы атаки встроили BLOB-объект.

Последний при открытии файла расшифровывается и отображается жертве как картинка. Параллельно зловред второго этапа подключается к C2-серверу (зашифрованный адрес тоже вставлен в текст исходного документа) и загружает следующий пейлоад — подписанный исполняемый файл Mach-O, в котором скрыт троян, написанный на Rust.

Целевой вредонос способен работать на машинах с архитектурой ARM либо x86 и благодаря хитроумной схеме доставки до сих пор практически не детектится. Он умеет собирать системные данные (в том числе о запущенных процессах), проверять текущее время, обнаруживать виртуальное окружение, а также позволяет оператору выполнять различные действия на зараженном устройстве.

 

Каким образом злоумышленники получают доступ для внедрения новобранца, пока не установлено. Неизвестно также, имеют ли атаки успех, однако появление данного вредоноса в арсенале BlueNoroff еще раз подтвердило ранее подмеченную тенденцию в криминальном мире — переход на кросс-платформенные разработки за счет использования таких языков программирования, как Go и Rust.

AppSec.Track научился проверять код, написанный ИИ

AppSec.Track добавил поддержку работы с ИИ и стал первым российским SCA-анализатором, который умеет проверять код прямо в связке с ИИ-ассистентами. Обновление рассчитано в том числе на так называемых «вайб-кодеров» — разработчиков, которые активно используют LLM и ИИ-редакторы для генерации кода.

Новый функционал решает вполне практичную проблему: ИИ всё чаще пишет код сам, но далеко не всегда делает это безопасно.

Модель может «галлюцинировать», предлагать несуществующие пакеты, устаревшие версии библиотек или компоненты с известными уязвимостями. AppSec.Track теперь умеет отлавливать такие ситуации автоматически.

Разработчик может прямо в диалоге с ИИ-ассистентом запросить проверку сгенерированного кода через AppSec.Track. Система проанализирует используемые сторонние компоненты, подсветит потенциальные угрозы и предложит варианты исправления. В основе механизма — протокол MCP (Model Context Protocol), который позволяет безопасно подключать инструменты анализа к LLM.

Как поясняет директор по продукту AppSec.Track Константин Крючков, разработчики всё чаще пишут код «по-новому», а значит, и инструменты анализа должны меняться. Редакторы вроде Cursor или Windsurf уже умеют многое, но им всё равно нужна качественная и актуальная база уязвимостей. Именно её и даёт AppSec.Track, включая учёт внутренних требований безопасности конкретной компании. В итоге даже разработчик без глубокой экспертизы в ИБ может получить более надёжный результат.

Проблема особенно заметна на фоне роста low-coding и vibe-coding подходов. Код создаётся быстрее, а иногда — почти без участия человека, но с точки зрения безопасности в нём могут скрываться неприятные сюрпризы: SQL-инъекции, логические ошибки или небезопасные зависимости. Как отмечает старший управляющий директор AppSec Solutions Антон Башарин, ИИ-ассистенты не заменяют классические практики DevSecOps — особенно когда речь идёт об open source, где информация об угрозах обновляется быстрее, чем обучаются модели.

Новый функционал AppSec.Track ориентирован на профессиональные команды разработки, которые уже внедряют ИИ в свои процессы. Он позволяет сохранить требования Secure by Design и снизить риски даже в условиях активного использования генеративного кода.

RSS: Новости на портале Anti-Malware.ru