В Операции Триангуляция использовались недокументированные фичи Apple CPU

В Операции Триангуляция использовались недокументированные фичи Apple CPU

В Операции Триангуляция использовались недокументированные фичи Apple CPU

«Операция Триангуляция», ставшая одной из самых громких кибершпионских атак, использовала недокументированные функции в процессорах Apple для обхода аппаратных средств защиты. На новые подробности указали специалисты «Лаборатории Касперского».

Поскольку шпионская операция затронула сотрудников Kaspersky, они продолжают анализ сложной цепочки атак, пытаясь найти новые детали.

Благодаря обратному инжинирингу экспертам удалось выяснить, что киберпреступники грамотно подошли к кампании и задействовали малоизвестные аппаратные возможности.

Изучая «Операцию Триангуляция», команда «Лаборатории Касперского» нашла четыре уязвимости нулевого дня: CVE-2023-32434, CVE-2023-32435CVE-2023-38606 и CVE-2023-41990. После соответствующего уведомления Apple пропатчила эти бреши. Всю цепочку атак исследователи отразили на инфографике ниже:

 

На фоне других выделяется уязвимость CVE-2023-38606, которая, по словам Kaspersky, и помогла атакующим обойти аппаратную защиту на устройствах Apple. А эксплойт для CVE-2023-32434 позволил злоумышленникам получить доступ к чтению и записи в память ядра.

В отчёте «Лаборатории Касперского» отмечается, что CVE-2023-38606 нацелена на неизвестные регистры MMIO (memory-mapped I/O) в процессорах Apple A12-A16. Скорее всего, брешь связана с графическим сопроцессором, который не указан в DeviceTree.

 

Специалисты считают, что присутствие недокументированной аппаратной фичи в iPhone либо является ошибкой, либо оставлена для отладки и тестирования. В прошлом месяце мы упоминали, что защита авторов Триангуляции была взломана с помощью MitM и промашки Apple.

Сложный бесфайловый троян ShadowHS незаметно захватывает Linux-системы

Исследователи обнаружили ShadowHS — продвинутый бесфайловый фреймворк для атак на Linux, который заметно отличается от привычных вредоносных программ. Это не очередной бинарник, который можно поймать антивирусом, а полноценный инструмент постэксплуатации, целиком работающий в памяти и рассчитанный на долгую и аккуратную работу внутри защищённых корпоративных сред.

По данным Cyble Research & Intelligence Labs, ShadowHS — это сильно модифицированная и «вооружённая» версия утилиты hackshell.

В процессе заражения вредонос вообще не пишет файлы на диск: он выполняется из анонимных файловых дескрипторов, маскирует имя процесса под легитимные приложения вроде python3 и тем самым обходит контроль целостности и классические механизмы защиты.

Цепочка заражения начинается с многоступенчатого шелл-загрузчика, в котором полезная нагрузка зашифрована с помощью AES-256-CBC. После запуска загрузчик проверяет наличие зависимостей вроде OpenSSL, Perl и gzip, определяет контекст запуска и только затем восстанавливает пейлоад через сложную цепочку декодирования. Исполнение происходит напрямую из памяти — через /proc/<pid>/fd/<fd>, без следов в файловой системе.

 

Ключевая особенность ShadowHS — его «сдержанный» характер. В отличие от массовых зловредов, он не начинает сразу майнить криптовалюту или выкачивать данные. Сначала фреймворк проводит глубокую разведку окружения: ищет средства защиты, анализирует конфигурацию системы и передаёт результаты оператору, который уже вручную решает, что делать дальше. Такой подход больше похож на работу живого атакующего, чем на автоматизированный бот.

ShadowHS активно проверяет наличие корпоративных средств защиты — от CrowdStrike Falcon и Sophos Intercept X до Microsoft Defender, Elastic Agent, Wazuh, Tanium и агентов облачных провайдеров. Для этого используются проверки файловых путей, статусов сервисов и анализ состояния системы. Параллельно вредонос «зачищает территорию»: он ищет и завершает процессы конкурирующих семейств зловредов, включая Kinsing, Rondo и печально известный бэкдор Ebury, а также выявляет следы руткитов и прежних компрометаций.

Отдельного внимания заслуживает механизм вывода данных. Вместо стандартных SSH, SCP или SFTP ShadowHS использует пользовательские туннели GSocket. Передача файлов идёт через заранее заданную точку rendezvous и маскируется под локальные соединения, которые фактически перехватываются GSocket до попадания в сетевой стек. Такой подход позволяет обходить файрволы и средства сетевого мониторинга, не создавая очевидных сетевых сессий.

Если оператор решает активировать «тяжёлые» модули, ShadowHS способен развернуть сразу несколько вариантов криптомайнинга — от XMRig и XMR-Stak до GMiner и lolMiner. Для латерального перемещения он подтягивает инструменты вроде Rustscan. В коде также заложены модули для кражи AWS-учёток, SSH-ключей, данных из GitLab, WordPress, Bitrix, Docker, Proxmox, OpenVZ и облачных метаданных-сервисов — пока они остаются «спящими».

Из-за полностью fileless-архитектуры традиционные сигнатурные средства защиты против ShadowHS почти бесполезны. Эффективное обнаружение требует анализа поведения процессов, мониторинга исполнения в памяти и телеметрии на уровне ядра. Эксперты рекомендуют уделять внимание аномальной генеалогии процессов, подмене аргументов запуска и нетипичному использованию механизмов вроде memfd.

RSS: Новости на портале Anti-Malware.ru