Киберпреступники переходят к персонализированным атакам

Киберпреступники переходят к персонализированным атакам

 В сложной, непрерывно меняющейся среде онлайновых преступлений происходит стратегический сдвиг. Киберпреступники отказываются от традиционных методов массовой рассылки спама и переходят к персонализированным атакам. Главная цель этих атак – кража интеллектуальной собственности. Ежегодно такие атаки, организуемые с учетом особенностей того или иного объекта и содержащие вредоносные программные коды, нацеленные на конкретную группу пользователей и даже на отдельного пользователя, наносят ущерб в 1,29 млрд долларов США. Об этом говорится в новом отчете компании Cisco по вопросам информационной безопасности. Отчет составлен по результатам глобального исследования, проведенного подразделением Cisco@Security Intelligence Operations в 50 странах.



 С июня 2010 года по июнь 2011 года выручка от массовой рассылки спама сократилась с 1,1 млрд долларов до 500 млн долларов США. За тот же период произошло резкое падение объемов спама – с 300 млрд до 40 млрд сообщений в день. Зато число целевых фишинг-атак увеличилось втрое, а персонализированных жульнических и злоумышленных действий - вчетверо, передает cybersecurity

Успех целевых атак, как и других киберпреступлений, строится на технических уязвимостях и людской доверчивости. Против таких атак труднее всего защищаться, тогда как они могут нанести значительный ущерб. Минимальные по своему объему, эти атаки направлены на конкретного пользователя или пользовательскую группу, сохраняя анонимность и применяя специализированные каналы распространения ботнетов. Как правило, они стремятся установить у пользователя вредоносный код или устойчивое вредоносное решение для сбора данных в течение определенного времени. Одним из примеров целенаправленной атаки стал печально известный «червь» Stuxnet, способный серьезно нарушить работоспособность промышленных вычислительных систем. Этот «червь» распространяется даже через несетевые среды, поражая системы, не подключенные к Интернету и другим сетям.

Целевой фишинг стоит дороже массовой рассылки спама, хотя создает меньший объем трафика. Тем не менее такая атака может привести к весьма печальным последствиям для современного предприятия. Фишинг приводит к краже финансовых средств, и это делает данный вид криминальной деятельности особо опасным для жертв и привлекательным для киберпреступников. Широкомасштабная фишинг-кампания с использованием целенаправленных методов может принести преступнику в 10 раз больше "дохода", чем традиционный фишинг, основанный на массовых рассылках.

"Персонализированные целенаправленные атаки, проводимые для получения доступа к корпоративным банковским счетам и ценной интеллектуальной собственности, встречаются все чаще, - утверждает Ник Эдвардс, директор отдела технологий информационной безопасности компании Cisco. - Действия правоохранительных органов сделали массовую рассылку спама менее привлекательной для киберпреступников, и они стали уделять больше времени и усилий разным видам целевого фишинга и другим целенаправленным атакам".

ИИ учится задавать вопросы сам себе — и от этого становится умнее

Даже самые продвинутые ИИ-модели пока что во многом лишь повторяют — учатся на примерах человеческой работы или решают задачи, которые им заранее придумали люди. Но что если искусственный интеллект сможет учиться почти как человек — сам задавать себе интересные вопросы и искать на них ответы?

Похоже, это уже не фантазия. Исследователи из Университета Цинхуа, Пекинского института общего искусственного интеллекта (BIGAI) и Университета штата Пенсильвания показали, что ИИ способен осваивать рассуждение и программирование через своеобразную «игру с самим собой».

Проект получил название Absolute Zero Reasoner (AZR). Его идея проста и изящна одновременно. Сначала языковая модель сама придумывает задачи по программированию на Python — достаточно сложные, но решаемые. Затем она же пытается их решить, после чего проверяет себя самым честным способом: запускает код.

 

Если решение сработало — отлично. Если нет — ошибка становится сигналом для обучения. На основе успехов и провалов система дообучает исходную модель, постепенно улучшая и умение формулировать задачи, и способность их решать.

Исследователи протестировали подход на открытой языковой модели Qwen с 7 и 14 миллиардами параметров. Оказалось, что такой «самообучающийся» ИИ заметно улучшает навыки программирования и логического мышления — и в некоторых тестах даже обгоняет модели, обученные на вручную отобранных человеческих данных.

 

По словам аспиранта Университета Цинхуа Эндрю Чжао, одного из авторов идеи, подход напоминает реальный процесс обучения человека:

«Сначала ты копируешь родителей и учителей, но потом начинаешь задавать собственные вопросы. И в какой-то момент можешь превзойти тех, кто тебя учил».

Идея «самоигры» для ИИ обсуждается не первый год — ещё раньше её развивали такие исследователи, как Юрген Шмидхубер и Пьер-Ив Удейер. Но в Absolute Zero особенно интересно то, как растёт сложность задач: чем умнее становится модель, тем более сложные вопросы она начинает ставить перед собой.

«Уровень сложности растёт вместе с возможностями модели», — отмечает исследователь BIGAI Цзилун Чжэн.

Сейчас подход работает только там, где результат можно легко проверить — в программировании и математике. Но в будущем его хотят применить и к более «жизненным» задачам: работе ИИ-агентов в браузере, офисных сценариях или автоматизации процессов. В таких случаях модель могла бы сама оценивать, правильно ли агент действует.

«В теории это может стать путём к суперинтеллекту», — признаёт Чжэн.

RSS: Новости на портале Anti-Malware.ru