Чем лучше звучит синтетическая речь, тем сложнее отличить её от настоящей. Но теперь выяснилось, что даже хорошо обученные антифейковые модели можно легко обмануть с помощью обычного воспроизведения и повторной записи звука.
В начале июня вышло исследование от команды учёных из Германии, Польши, Румынии и компании Resemble AI, которая, кстати, сама делает голосовой ИИ и детекторы дипфейков. Они показали, как так называемые «replay attacks» (атаки повторным воспроизведением) обманывают системы защиты.
Суть простая: берётся синтетический голос, включается через колонку и записывается заново — уже с искажениями, эхом, шумом комнаты. Для человеческого уха разница минимальна, но для модели это уже почти «настоящий» голос. Вуаля — фейк проходит проверку.
А как это связано с безопасностью?
Сегодня вишинг (это когда звонят и притворяются, скажем, ИТ-специалистом компании) — одна из популярных схем атак. А если ИИ может подделать голос босса или техподдержки, параллельно обойдя защиту, становится страшновато.
Даже если в компании стоит антифрод-система, которая слушает звонки и проверяет голос, — достаточно включить фейковый голос через колонку и перезаписать, чтобы обмануть систему.
Что показали эксперименты?
Исследователи протестировали:
- 6 разных моделей для распознавания дипфейков (включая W2V2-AASIST и Whisper),
- 4 синтетических движка,
- 109 разных связок «колонка + микрофон»,
- на 6 языках.
И собрали датасет ReplayDF — 132,5 часа переозвученного аудио. Условия — максимально приближены к реальности: шум, искажения, акустика комнаты. И результат:
- У топовой модели ошибка выросла с 4,7% до 18,2%.
- Даже если обучать модель заново с учётом акустики — ошибка всё равно 11%.
Почему так? Потому что переозвучка убирает ключевые артефакты, по которым дипфейк можно распознать.
А можно ли защититься?
Учёные попробовали добавить «акустический отпечаток комнаты» (RIR — Room Impulse Response) в обучение моделей. Для этого, например, записывают, как в помещении звучит хлопок или короткий щелчок — это даёт информацию об эхо и реверберации.
С этим подходом точность улучшилась на 10-15%, но полностью проблему он не решает. Replay-атаки всё ещё проходят.
Что в итоге?
ИИ-голоса стали настолько реалистичны, что простые методы защиты больше не спасают. Атака «включил-фейк-записал-заново» уже вполне рабочая. Исследователи выложили свой датасет ReplayDF в открытый доступ — некоммерческое использование разрешено.
Так что теперь у разработчиков защиты от дипфейков есть новая головная боль. А у хакеров — ещё один способ обойти системы безопасности.