Выпускник Физтеха разработал алгоритм машинного обучения, позволяющий выявить и заблокировать сибил-аккаунты, созданные мошенниками для кражи криптовалютных токенов, которые бесплатно раздают в рамках рекламных акций.
Разработка протестирована на 2,5 млн криптокошельков и показала точность обнаружения фальшивок 90% — в два раза выше аналогов, используемых в криптоиндустрии с целью защиты airdrop-кампаний от атак злоумышленников.
Для незаконного получения вознаграждений, предлагаемых при продвижении криптопроектов, мошенник может создать целую сеть фейковыз кошельков (сибил-аккантов). Подобные злоупотребления искажают метрики, провоцируют падение курса токенов и в итоге подрывают доверие к проекту.
«Мой алгоритм анализирует десятки параметров: от поведенческих паттернов и кросс-чейн-активности до сетевых связей между кошельками, — пояснил автор дипломной работы Алексей Саплин. — Это позволяет выявлять даже сложные кластеры, которые остаются незамеченными при использовании стандартных методов. Алгоритм показал точность 90%, а большинство существующих решений показывают эффективность на уровне 45–60%».
Тестирование разработки проводилось в рамках открытого конкурса, организованного Layer Zero, благодаря этому проект смог аннулировать несправедливое распределение токенов на сумму $10,2 миллиона.
Созданный Саплиным ML-алгоритм можно заточить и под другие криптопроекты; в МФТИ уже ведутся работы в этом направлении. Сам автор собирается продолжить исследования в аспирантуре и надеется, что ему в итоге удастся создать универсальный инструмент выявления мошеннических схем в различных блокчейн-экосистемах.