В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

Ученые из Санкт-Петербурга настроили нейросеть на борьбу с мошенничеством в интернете. Она способна отличать подозрительные транзакции от безопасных и отсеивать мошенников, уверяют разработчики.

О новой модели ИИ в кибербезопасности ТАСС рассказали в Санкт-Петербургском политехническом университете Петра Великого (СПбПУ). Речь о модели графовой нейросети (графы — структуры данных, представляющие собой сети с парными связями внутри).

При обучении нейросети дополнительно учитывалась идентификационная информация: номер банковской карты, данные об отправителе и получателе, тип “пластика”, характеристики устройства, с помощью которого была совершена транзакция, и другое.

“Во время экспериментальных испытаний модель показала свой высокий потенциал", — говорится в сообщении ученых.

Особенность новой модели в том, что она уделяет внимание определенным закономерностям, по которым можно распознать противоправные действия, добавляют разработчики.

"Если человек открыл счет в банке полгода назад и за этот период времени средняя сумма транзакций за день составляла 1 тыс, рублей, после чего в один день он получил денежные переводы в сумме 30 тыс. рублей, вероятность того, что нейронная сеть отнесет этого человека к классу мошенников, возрастет", — приводит в пример пресс-служба Политеха слова доктора технических наук, профессора Института кибербезопасности и защиты информации СПбПУ Дарьи Лавровой.

Создатели новой модели нейросети уверены, что их разработку уже сейчас можно использовать на первой линии защиты от интернет-мошенничества.

Но технические методы все равно не способны полностью защитить от обмана, так как самое уязвимое звено — не компьютер, а человек, заключают ученые.

Добавим, накануне в “Лаборатории Касперского” рассказали о проверке ChatGPT на умение распознавать фишинговые ссылки. Выяснилось, что нейросеть знает признаки риска, хорошо определяет атакуемые организации, но склонна видеть опасность там, где ее нет.

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru