ChatGPT проявил себя как стажер в роли фишинг-аналитика

ChatGPT проявил себя как стажер в роли фишинг-аналитика

ChatGPT проявил себя как стажер в роли фишинг-аналитика

В «Лаборатории Касперского» проверили возможности творения OpenAI по распознаванию фишинговых ссылок. Как оказалось, ChatGPT знает признаки риска, хорошо определяет атакуемые организации, однако склонен видеть опасность там, где ее нет.

Новое исследование — продолжение экспериментов с большой языковой моделью (LLM) серии GPT на предмет ее пригодности для нужд кибербеза. На сей раз популярный ИИ-бот заставили анализировать URL с целью выявления угрозы фишинга.

Такая задача была выбрана по нескольким причинам:

  • ссылки легко укладываются в лимит на количество символов (у LLM вроде ChatGPT фиксированное контекстное окно);
  • явно вредоносные ссылки хорошо детектятся, но для этого необходимо знание виртуального мира (например, имен популярных веб-сервисов);
  • URL— это текст, обработка которого не составляет труда для LLM.

Для начала исследователи решили выяснить, что ИИ-боту известно о фишинге. Вопрос был сформулирован следующим образом:

«Судя по URL, эта ссылка — попытка фишинга? Пожалуйста, поясни, почему. Ссылка: hxxp://caseld-10xxxx.info/1/Office365/0fflce3.6.5/live/login.php».

Бот ответил, что скорее всего это так, и указал ряд показателей риска:

  1. Имя домена не ассоциируется с каким-либо авторитетным или узнаваемым ресурсом, а также выглядит, как произвольная последовательность символов.
  2. В URL присутствует термин Office365, имя популярного набора инструментов, обычно используемое в фишинговых атаках.
  3. Слово live может намекать на то, что это официальная страница входа Microsoft Office365, так как Microsoft ранее использовала «live» в некоторых сервисах.
  4. Неправильное написание Office как 0fflce — еще один индикатор риска, фишеры обычно так делают, чтобы убедить пользователей в легитимности сайта.
  5. Расширение .php в конце URL говорит о наличии PHP-скрипта на сервере; в фишинговых атаках это обычный инструмент для сбора учетных данных.

Подобный ответ, за исключением излишней подозрительности по отношению к PHP-скриптам, эксперты сочли достойным уровня младшего аналитика.

Результаты тестов на наборах URL-текстов разочаровали исследователей. Когда gpt-3.5-turbo (бэкенд ChatGPT) через API скормили пару тысяч фишинговых ссылок вперемешку с таким же количеством безобидных URL, назначенный «кибергуру» чат-бот выдал около 6 тыс. вердиктов. Разбор этих ответов показал уровень детектирования 87,2% (высокий), а ложноположительных срабатываний — 23,2%, что неприемлемо много.

Чтобы исправить ситуацию, чат-бот понизили до ранга помощника по интернет-безопасности: попросили отфильтровать ссылки, небезопасные для посещения. Уровень детектирования повысился (93,8%), показатель ложноположительных ответов — к сожалению, тоже (64,3%).

Результаты по извлечению из URL потенциальных целей фишеров оказались не в пример лучше. ИИ-боту были известны многие интернет-ресурсы и финансовые сервисы, поэтому он правильно определил мишени в половине случаев, притом даже при наличии тайпсквоттинга. Он также умеет распознавать омографические атаки, правда, иногда принимает такую уловку за умышленную опечатку.

Обоснования вердикта ChatGPT обычно развернуты и вполне разумны, хотя бывают и забавными. Иногда он ссылается на данные, которые ему недоступны: запись в WHOIS, контент либо оформление поддельного сайта, истекший срок SSL-сертификата, а также может выдать неверные сведения. Подобные факты еще раз подтвердили свойство LLM, ранее подмеченное другими пользователями: склонность к «галлюцинациям».

В целом исследователи признали ChatGPT годным в роли помощника фишинг-аналитика, способного быстро перечислить подозрительные составляющие URL или подсказать организацию-мишень. Однако такой стажер непременно должен работать под присмотром.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Троян Shuyal Stealer ворует данные из 19 браузеров и исчезает без следа

В ИБ-компании Point Wild проанализировали образец Windows-стилера Shuyal, объявившегося в июле, и обнаружили внушительный список целевых браузеров — 19 наименований, в том числе Яндекс Браузер и Tor.

Свое имя написанный на C++ зловред (детектится на VirusTotal с результатом 48/72 по состоянию на 8 октября) получил по найденному в экзешнике идентификатору. От собратьев новобранец отличается не только большим количеством целей, но также умением заметать следы.

После запуска Shuyal Stealer прежде всего выполняет глубокое профилирование зараженной системы с помощью WMI: собирает данные жестких дисков (модель, серийный номер), подключенной клавиатуры (включая ID), информацию о настройках монитора, чтобы выстроить стратегию кражи данных сообразно конкретным условиям.

Троян также прибивает Диспетчер задач, способный выдать запуск вредоносных процессов, и прописывается в системе на автозапуск.

Кража данных осуществляется с помощью скриптов PowerShell. При этом зловреда интересует следующая информация:

  • сохраненные в браузере учетки, куки и история посещения сайтов;
  • содержимое буфера обмена;
  • токены аутентификации из Discord, Discord Canary и Discord PTB.

Инфостилер также умеет делать скриншоты, чтобы добавить контекст к украденным данным.

Вся добыча вместе с журналом вредоносной активности (history.txt) помещается в директорию runtime, специально создаваемую в папке временных файлов. Для эксфильтрации ее содержимое архивируется (runtime.zip) и затем отсылается в телеграм-бот, который Shuyal находит по вшитому ID.

Завершив кражу и вывод данных, Shuyal пытается стереть все следы своего присутствия в системе с помощью скрипта util.bat.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru