Машинное зрение позволяет шпионить, созерцая пустую стену комнаты

Машинное зрение позволяет шпионить, созерцая пустую стену комнаты

Машинное зрение позволяет шпионить, созерцая пустую стену комнаты

Университетские исследователи разработали методику, позволяющую внешнему наблюдателю с ограниченным обзором узнать, сколько людей в комнате и чем они заняты. Как оказалось, источником информации может стать даже пустая стена, если ты вооружен видеокамерой с высоким разрешением и ИИ-анализатором, умеющим выделять нужный сигнал из шума при еле различимом изменении освещения.

Чтобы доказать такую возможность, в Массачусетском технологическом институте (MIT) провели обучение двух сверточных нейросетей на наборах данных, полученных при проигрывании 20 различных сценариев поведения человека. В итоге исследователям удалось повысить точность прогнозирования до 94%. Результаты работы будут представлены на Международной конференций по машинному зрению (ICCV 2021), которая стартует в понедельник, 11 октября, в режиме онлайн.

«Когда человек ходит по комнате, он частично заслоняет собой свет, и на стенах колышутся легкие, едва различимые тени, — пояснил один из соавторов исследования для Scientific American. — Если одежда яркая, может появиться приглушенный отблеск. Однако эти слабые сигналы обычно тонут в потоке света из основного источника, и при видеонаблюдении этот шум надо как-то убрать, чтобы он не мешал следить за объектом».

Исследователям удалось разделить световой шум и полезную информацию, а также вычленить ложные сигналы — тени от мебели и других неподвижных предметов. При видеосъемке пустых стен комнаты все лишние составляющие отсеивались в реальном времени.

Эксперименты проводились в различных помещениях, с разным числом объектов наблюдения, которые действовали по заданному сценарию, стараясь не попасть в объектив. Отснятые видеоматериалы прогонялись через модель машинного обучения; в итоге система научилась без калибровки уверенно определять количество людей и их активность в любой комнате.

 

При плохом внутреннем освещении или мерцающем свете (такое бывает, когда в комнате включен телевизор) созданная в MIT система работает хуже. К недостаткам можно также отнести тот факт, что для подобного соглядатайства нужна видеокамера с высоким разрешением: обычная цифровая камера создает много фонового шума, а возможности смартфона в этом плане слишком слабы.

Предложенный MIT вариант продвинутой слежки могут по достоинству оценить военные или контрразведка. Исследователи также считают, что их метод можно использовать и в мирных целях — например, для обнаружения пешеходов в местах с плохим обзором (на крытых парковках и автостоянках) или для присмотра за пожилыми людьми, которые могут внезапно почувствовать себя плохо или даже упасть.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

В Гарда Deception добавили MiTM-детектор и улучшили работу в филиалах

Компания «Гарда» выпустила обновление своей системы обмана «Гарда Deception». Новая версия предназначена для того, чтобы уменьшить нагрузку на ИТ-подразделения и повысить устойчивость инфраструктуры, а также упростить выявление действий злоумышленников в сетях заказчиков.

Буквально на днях мы обозревали версию Гарда Deception 2.1. Рассказали о ключевых функциональных возможностях, архитектуре, системных требованиях и кейсах использования системы.

Централизованное управление приманками через AD

Главное изменение — поддержка безагентного метода доставки и обновления приманок через групповые политики Microsoft Active Directory (AD GPO).

Это значит, что теперь ИБ-специалисты могут централизованно распространять и обновлять приманки, не вмешиваясь в работу сотрудников. Все обновления выполняются по расписанию и в скрытом режиме, что снижает влияние на пользовательские станции и делает сеть более стабильной.

Новый MiTM-детектор для LLMNR

Чтобы повысить точность выявления атак, в систему добавлен детектор атак на протокол LLMNR. Он способен фиксировать попытки Man-in-the-Middle в широковещательных протоколах, что позволяет отлавливать больше тактик, используемых злоумышленниками на ранних этапах проникновения.

Поддержка распределённых сетей

Для компаний с филиальной структурой появился модуль «Филиал/Branch». Он позволяет ловушкам работать автономно, даже если связь с центральным узлом временно пропадает — мониторинг при этом остаётся непрерывным. Такой режим особенно актуален для организаций с удалёнными офисами и производственными объектами.

Быстрее разбирать инциденты

Теперь события безопасности можно связывать с техниками MITRE ATT&CK прямо внутри «Гарда Deception». Это ускоряет анализ и помогает аналитикам быстрее понимать, какой сценарий атаки разворачивается и какие действия предпринимает злоумышленник.

Более реалистичные ложные персоны

Обновление добавило и новые возможности по созданию фейковых учётных записей. Можно загружать данные из CSV — например, списки отключённых сотрудников — а также использовать регулярные выражения для генерации идентификаторов и добавлять отчества. Чем реалистичнее приманка, тем выше шанс, что злоумышленник взаимодействует именно с ней, а не с реальными активами.

Руководитель продукта «Гарда Deception» Екатерина Харитонова отмечает, что новые функции направлены на повышение точности обнаружения атак и автоматизацию рутинных операций, чтобы сократить нагрузку на команды ИБ и упростить анализ угроз.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru