Машинное зрение позволяет шпионить, созерцая пустую стену комнаты

Машинное зрение позволяет шпионить, созерцая пустую стену комнаты

Машинное зрение позволяет шпионить, созерцая пустую стену комнаты

Университетские исследователи разработали методику, позволяющую внешнему наблюдателю с ограниченным обзором узнать, сколько людей в комнате и чем они заняты. Как оказалось, источником информации может стать даже пустая стена, если ты вооружен видеокамерой с высоким разрешением и ИИ-анализатором, умеющим выделять нужный сигнал из шума при еле различимом изменении освещения.

Чтобы доказать такую возможность, в Массачусетском технологическом институте (MIT) провели обучение двух сверточных нейросетей на наборах данных, полученных при проигрывании 20 различных сценариев поведения человека. В итоге исследователям удалось повысить точность прогнозирования до 94%. Результаты работы будут представлены на Международной конференций по машинному зрению (ICCV 2021), которая стартует в понедельник, 11 октября, в режиме онлайн.

«Когда человек ходит по комнате, он частично заслоняет собой свет, и на стенах колышутся легкие, едва различимые тени, — пояснил один из соавторов исследования для Scientific American. — Если одежда яркая, может появиться приглушенный отблеск. Однако эти слабые сигналы обычно тонут в потоке света из основного источника, и при видеонаблюдении этот шум надо как-то убрать, чтобы он не мешал следить за объектом».

Исследователям удалось разделить световой шум и полезную информацию, а также вычленить ложные сигналы — тени от мебели и других неподвижных предметов. При видеосъемке пустых стен комнаты все лишние составляющие отсеивались в реальном времени.

Эксперименты проводились в различных помещениях, с разным числом объектов наблюдения, которые действовали по заданному сценарию, стараясь не попасть в объектив. Отснятые видеоматериалы прогонялись через модель машинного обучения; в итоге система научилась без калибровки уверенно определять количество людей и их активность в любой комнате.

 

При плохом внутреннем освещении или мерцающем свете (такое бывает, когда в комнате включен телевизор) созданная в MIT система работает хуже. К недостаткам можно также отнести тот факт, что для подобного соглядатайства нужна видеокамера с высоким разрешением: обычная цифровая камера создает много фонового шума, а возможности смартфона в этом плане слишком слабы.

Предложенный MIT вариант продвинутой слежки могут по достоинству оценить военные или контрразведка. Исследователи также считают, что их метод можно использовать и в мирных целях — например, для обнаружения пешеходов в местах с плохим обзором (на крытых парковках и автостоянках) или для присмотра за пожилыми людьми, которые могут внезапно почувствовать себя плохо или даже упасть.

Злоумышленники научились использовать умные кормушки для слежки

Злоумышленники могут использовать взломанные умные кормушки для животных для слежки за владельцами. Для получения информации применяются встроенные в устройства микрофоны и видеокамеры. Получив несанкционированный доступ, атакующие способны наблюдать за происходящим в помещении и перехватывать данные.

Об использовании таких устройств в криминальных целях рассказал агентству «Прайм» эксперт Kaspersky ICS CERT Владимир Дащенко.

«Это уже не гипотетическая угроза: известны случаи взлома домашних камер, видеонянь, кормушек для животных и других умных приборов», — предупреждает эксперт.

По словам Владимира Дащенко, вопросам кибербезопасности таких устройств часто не уделяется должного внимания. Между тем любое оборудование с доступом в интернет может стать точкой входа для злоумышленников.

Скомпрометированные устройства могут использоваться и для атак на другие элементы домашней сети — например, смартфоны или компьютеры. Кроме того, они способны становиться частью ботнетов, применяемых для DDoS-атак или майнинга криптовалют. На подобные риски почти год назад обращало внимание МВД России.

Среди признаков возможной компрометации умных устройств эксперт называет самопроизвольные отключения, резкие изменения сетевой активности, появление сообщений об ошибках или другие нетипичные события.

RSS: Новости на портале Anti-Malware.ru