В системе Apple для сканирования фотографий пользователей нашли изъян

В системе Apple для сканирования фотографий пользователей нашли изъян

В системе Apple для сканирования фотографий пользователей нашли изъян

Исследователи выявили уязвимость в алгоритме хеширования NeuralHash, который Apple использует, помимо прочего, для проверки схожести фото и видео пользователя с известными материалами, на которых запечатлена эксплуатация несовершеннолетних. Таким образом, система сканирования Apple CSAM получила новую порцию критики.

На этой неделе один из пользователей GitHub опубликовал на площадке реконструированную Python-версию NeuralHash. По словам специалиста, ему удалось провести обратный инжиниринг протокола из прошлых версий iOS.

В посте также содержалась инструкция, позволяющая извлечь NeuralHash из текущих сборок macOS или iOS. Стоит отметить, что NeuralHash не используется конкретно для CSAM, однако всё равно даёт представление об уязвимостях системы в целом.

«Предварительные тесты показали, что алгоритм допускает сжатие и изменение размеров изображения, но при этом запрещает переворачивать его или обрезать», — написал выложивший алгоритм эксперт на страницах Reddit.

«Надеюсь, это поможет нам лучше понять алгоритм NeuralHash и вычислить его потенциальные слабости до того, как он появится в iOS».

Вскоре после этого пользователь Кори Корнелиус отметил интересную особенность алгоритма: два изображения могут генерировать абсолютно одинаковый хеш. Apple же утверждает, что дополнительные защитные функции системы CSAM будут пресекать эксплуатацию этой бреши.

Напомним, что с момента анонсирования функции сканирования фотографий и видеозаписей Apple пытается убедить всех, что она абсолютно безопасна для добропорядочных граждан. Например, на днях корпорация ответила на обвинения во встраивании бэкдора.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

В Гарда Deception добавили MiTM-детектор и улучшили работу в филиалах

Компания «Гарда» выпустила обновление своей системы обмана «Гарда Deception». Новая версия предназначена для того, чтобы уменьшить нагрузку на ИТ-подразделения и повысить устойчивость инфраструктуры, а также упростить выявление действий злоумышленников в сетях заказчиков.

Буквально на днях мы обозревали версию Гарда Deception 2.1. Рассказали о ключевых функциональных возможностях, архитектуре, системных требованиях и кейсах использования системы.

Централизованное управление приманками через AD

Главное изменение — поддержка безагентного метода доставки и обновления приманок через групповые политики Microsoft Active Directory (AD GPO).

Это значит, что теперь ИБ-специалисты могут централизованно распространять и обновлять приманки, не вмешиваясь в работу сотрудников. Все обновления выполняются по расписанию и в скрытом режиме, что снижает влияние на пользовательские станции и делает сеть более стабильной.

Новый MiTM-детектор для LLMNR

Чтобы повысить точность выявления атак, в систему добавлен детектор атак на протокол LLMNR. Он способен фиксировать попытки Man-in-the-Middle в широковещательных протоколах, что позволяет отлавливать больше тактик, используемых злоумышленниками на ранних этапах проникновения.

Поддержка распределённых сетей

Для компаний с филиальной структурой появился модуль «Филиал/Branch». Он позволяет ловушкам работать автономно, даже если связь с центральным узлом временно пропадает — мониторинг при этом остаётся непрерывным. Такой режим особенно актуален для организаций с удалёнными офисами и производственными объектами.

Быстрее разбирать инциденты

Теперь события безопасности можно связывать с техниками MITRE ATT&CK прямо внутри «Гарда Deception». Это ускоряет анализ и помогает аналитикам быстрее понимать, какой сценарий атаки разворачивается и какие действия предпринимает злоумышленник.

Более реалистичные ложные персоны

Обновление добавило и новые возможности по созданию фейковых учётных записей. Можно загружать данные из CSV — например, списки отключённых сотрудников — а также использовать регулярные выражения для генерации идентификаторов и добавлять отчества. Чем реалистичнее приманка, тем выше шанс, что злоумышленник взаимодействует именно с ней, а не с реальными активами.

Руководитель продукта «Гарда Deception» Екатерина Харитонова отмечает, что новые функции направлены на повышение точности обнаружения атак и автоматизацию рутинных операций, чтобы сократить нагрузку на команды ИБ и упростить анализ угроз.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru