В системе Apple для сканирования фотографий пользователей нашли изъян

В системе Apple для сканирования фотографий пользователей нашли изъян

В системе Apple для сканирования фотографий пользователей нашли изъян

Исследователи выявили уязвимость в алгоритме хеширования NeuralHash, который Apple использует, помимо прочего, для проверки схожести фото и видео пользователя с известными материалами, на которых запечатлена эксплуатация несовершеннолетних. Таким образом, система сканирования Apple CSAM получила новую порцию критики.

На этой неделе один из пользователей GitHub опубликовал на площадке реконструированную Python-версию NeuralHash. По словам специалиста, ему удалось провести обратный инжиниринг протокола из прошлых версий iOS.

В посте также содержалась инструкция, позволяющая извлечь NeuralHash из текущих сборок macOS или iOS. Стоит отметить, что NeuralHash не используется конкретно для CSAM, однако всё равно даёт представление об уязвимостях системы в целом.

«Предварительные тесты показали, что алгоритм допускает сжатие и изменение размеров изображения, но при этом запрещает переворачивать его или обрезать», — написал выложивший алгоритм эксперт на страницах Reddit.

«Надеюсь, это поможет нам лучше понять алгоритм NeuralHash и вычислить его потенциальные слабости до того, как он появится в iOS».

Вскоре после этого пользователь Кори Корнелиус отметил интересную особенность алгоритма: два изображения могут генерировать абсолютно одинаковый хеш. Apple же утверждает, что дополнительные защитные функции системы CSAM будут пресекать эксплуатацию этой бреши.

Напомним, что с момента анонсирования функции сканирования фотографий и видеозаписей Apple пытается убедить всех, что она абсолютно безопасна для добропорядочных граждан. Например, на днях корпорация ответила на обвинения во встраивании бэкдора.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Через вредоносные Blender-файлы распространяют инфостилер StealC V2

Исследователи обнаружили новую кампанию «с российским следом», в рамках которой злоумышленники распространяют инфостилер StealC V2 через вредоносные файлы Blender, загруженные на крупные 3D-маркетплейсы вроде CGTrader. Blender позволяет выполнять Python-скрипты — они используются для автоматизации, кастомных панелей, ригов и аддонов.

Если у пользователя включена функция Auto Run, скрипты запускаются автоматически при открытии файла. Этим и пользуются атакующие: многие художники и моделлеры включают Auto Run ради удобства.

Специалисты Morphisec заметили, что вредоносные .blend-файлы содержат встроенный Python-код, который загружает лоадер с домена в Cloudflare Workers.

 

Далее загрузчик скачивает PowerShell-скрипт, который подтягивает два ZIP-архива — ZalypaGyliveraV1 и BLENDERX — с IP-адресов, контролируемых злоумышленниками.

Архивы распаковываются во временную папку, откуда создают LNK-файлы в автозагрузке для постоянства. Затем жертве подсовываются два компонента: основной инфостилер StealC и вспомогательный Python-стилер для подстраховки.

 

По данным Morphisec, атакующие используют последнюю версия второго поколения StealC — того самого, который ранее изучала Zscaler. Новый StealC заметно расширил функции:

  • крадёт данные из 23+ браузеров и поддерживает расшифровку паролей на стороне сервера, включая Chrome 132+;
  • поддерживает свыше 100 расширений криптокошельков и более 15 отдельных приложений;
  • ворует данные мессенджеров (Telegram, Discord, Tox, Pidgin), VPN-клиентов (ProtonVPN, OpenVPN) и почтовых программ, включая Thunderbird;
  • оснащён обновлённым механизмом обхода UAC.

При этом свежие версии StealC по-прежнему почти не детектируются антивирусами: Morphisec отмечает, что образец, который они изучали, не был распознан ни одним движком на VirusTotal.

Атака опасна тем, что 3D-маркетплейсы не могут проверять встроенный в файлы код. Художникам, аниматорам и моделлерам рекомендуется:

  • отключить автоматический запуск Python-скриптов: Blender → Edit → Preferences → снять галочку с Auto Run Python Scripts;
  • относиться к 3D-ассетам как к потенциально исполняемому коду;
  • скачивать файлы только у надёжных авторов или тестировать их в песочнице.

Злоумышленники явно ориентируются на профессиональное сообщество 3D-контента — и такая схема может оказаться особенно опасной для студий и фрилансеров, которые работают с большим количеством моделей из внешних источников.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru