Socialarks раскрыла ПДн 214 млн юзеров Facebook, Instagram и LinkedIn

Socialarks раскрыла ПДн 214 млн юзеров Facebook, Instagram и LinkedIn

Socialarks раскрыла ПДн 214 млн юзеров Facebook, Instagram и LinkedIn

Китайская компания Socialarks, специализирующаяся на управлении информационными материалами для социальных сетей, допустила серьёзную утечку более 400 ГБ персональных данных, принадлежащих миллионам пользователей Facebook, Instagram и LinkedIn.

Ошибка, надо сказать, уже традиционная — незащищённая база данных ElasticSearch, в которой хранилась конфиденциальная информация 214 миллионов пользователей соцсетей по всему миру. Приблизительно в такой же ситуации недавно оказался японский автопроизводитель Nissan, сотрудники которого не смогли должным образом защитить один из своих Git-серверов.

На незащищённую БД наткнулись исследователи Safety Detectives, занимающиеся поиском уязвимостей веб-сайтов и онлайн-проектов. Если специалисты находят проблему безопасности, владелец ресурса тут же получает соответствующее уведомление.

Именно так — сканируя IP-адреса — эксперты Safety Detectives обнаружили принадлежащий Socialarks ElasticSearch-сервер, который «торчал» в Сеть без какой-либо защиты. Владельцы не только не стали заморачиваться с шифрованием, но и поленились установить хотя бы пароль.

Таким образом, любой случайный пользователь или злоумышленник, наткнувшийся на БД Socialarks, мог просмотреть и скачать персональные данные миллионов пользователей популярных социальных сетей.

По словам Safety Detectives, общий объём базы составил 408 ГБ, при этом там хранилось более 318 миллионов записей данных. Стоит отметить, что это уже второй подобный инцидент в истории Socialarks. В августе 2002 года китайская компания также «слила» данные 150 млн пользователей LinkedIn, Facebook и Instagram.

 

В общей сложности специалисты Safety Detectives нашли в последней БД 11 651 162 Instagram-аккаунтов, 66 117 839 профилей LinkedIn и 81 551 567 учётных записей Facebook. Что касается конкретных данных, раскрытых незащищённым сервером, эксперты выделили следующие:

Instagram

  • Полные имена пользователей.
  • Телефонные номера более 6 млн людей.
  • Адреса электронной почты более 11 млн людей.
  • Ссылка на профиль.
  • Аватар.
  • Описание учётной записи.
  • Число подписчиков и подписок.
  • Страна проживания.
  • Часто используемые хештеги.

Facebook

  • Полные имена пользователей.
  • Информация об аккаунте.
  • Адреса электронной почты.
  • Телефонные номера.
  • Страна проживания.
  • Число лайков и подписок.
  • Идентификатор в Messenger.
  • Ссылка на веб-сайт.

LinkedIn

  • Полные имена пользователей.
  • Адреса электронной почты.
  • Занимаемая должность.
  • Подключённые аккаунты в других соцсетях (например, Twitter).

Security Vision КИИ получил новые функции по требованиям ФСТЭК России

Security Vision сообщила о выходе обновлённой версии продукта Security Vision КИИ. Решение предназначено для автоматизации процессов, связанных с выполнением требований законодательства по защите критической информационной инфраструктуры.

Одно из ключевых изменений касается процесса категорирования объектов КИИ.

В систему добавлены типовые отраслевые перечни объектов, а также обновлены критерии значимости с учётом изменений в постановлении Правительства РФ № 127 (в редакции от 7 ноября 2025 года). Приведена в актуальный вид и форма сведений о результатах категорирования.

Отдельное внимание уделено расчёту экономической значимости. Теперь он автоматизирован в соответствии с рекомендациями ФСТЭК России. В расчёт включаются такие показатели, как ущерб субъекту КИИ, ущерб бюджету РФ и возможное прекращение финансовых операций.

Система не только определяет значение критерия для присвоения категории значимости, но и формирует экономические показатели, которые автоматически попадают в раздел обоснования.

Также реализована автоматическая оценка состояния технической защиты — на основе методики ФСТЭК от 11 ноября 2025 года. Продукт рассчитывает показатели по отдельным группам и определяет итоговый уровень защищённости объекта.

Расширен функционал моделирования угроз. Помимо прежнего подхода, теперь доступна оценка по общему перечню угроз из банка данных ФСТЭК с применением актуальной методики оценки угроз безопасности информации. В процессе моделирования система автоматически выстраивает возможные сценарии реализации угроз — с учётом тактик и техник — и определяет способы их реализации. Пользователь может выбрать подходящую методику моделирования.

В части отчётности добавлены отчёты по угрозам, нейтрализованным мерами защиты, а также перечень угроз, признанных неактуальными, с указанием причин. Для моделирования по общему перечню предусмотрен отдельный дашборд.

Обновлённая версия ориентирована на упрощение процедур категорирования, расчётов и подготовки отчётности для организаций, подпадающих под требования законодательства о КИИ.

RSS: Новости на портале Anti-Malware.ru