Незащищенные базы сливали данные 60 млн пользователей LinkedIn

Незащищенные базы сливали данные 60 млн пользователей LinkedIn

Незащищенные базы сливали данные 60 млн пользователей LinkedIn

На просторах Сети были найдены восемь незащищенных баз данных, раскрывающих информацию приблизительно 60 миллионов пользователей социальной сети для деловых контактов — LinkedIn. Помимо прочей информации, в базах были указаны адреса электронной почты зарегистрированных в LinkedIn людей.

Первым обратил внимание на странные базы данных исследователь Сеньям Джейн из некоммерческой организации GDI.foundation. Джейн сообщил, что содержащие информацию пользователей LinkedIn базы то исчезали, то снова появлялись в Сети под разными IP-адресами.

«Мой анализ показал, что данные удалялись, а затем загружались на другой IP-адрес ежедневно. Спустя какое-то время база либо становилась недоступна, либо я не мог получить доступ к этому конкретному IP. Это очень странное поведение», — объясняет эксперт.

Суммарно во всех восьми базах содержалась информация приблизительно 60 миллионов пользователей LinkedIn. К счастью, ничего личного не утекло, это всего лишь публичные данные, которые были собраны с какой-то целью.

Общий объем баз данных 229 Гб, а размер каждой варьируется между 25 Гб и 32 Гб.

По словам Джейн, ему удалось проанализировать одну из записей, принадлежащих аккаунту конкретного пользователя LinkedIn. В результате в ней нашлись следующие данные: идентификатор, URL профиля, места работы, места учебы, геолокация, перечисленные навыки, время последнего обновления профиля.

Также в базах содержались адреса электронной почты, на которые были зарегистрированы учетные записи LinkedIn. В этом случае непонятно, как эти данные попали в базы, так как настройки многих пользователей запрещают публичный доступ к email-адресам.

Такие настройки профиля были у Лоуренса Абрамса из BleepingComputer, который также с удивлением обнаружил свой имейл в базах.

Более того, в незащищенных базах также указывалось, какой сервис электронной почты использует тот или иной пользователь. Эти значения имели вид «isProfessional», «isPersonal», «isGmail», «isHotmail» и «isOutlook».

Исследователи связались с компанией Amazon, которая выступала хостером незащищенных баз данных, и попросили ее закрыть доступ к данным пользователей LinkedIn. В LinkedIn заявили, что эти базы не принадлежат социальной сети.

В МФТИ подобрали работающие альтернативы GPU NVIDIA

Институт искусственного интеллекта МФТИ оценил возможности альтернативных графических процессоров (GPU) от китайских производителей. Параллельно в Физтехе был создан Центр компетенций, основной задачей которого стала помощь бизнесу в построении инфраструктуры для работы с искусственным интеллектом.

Российские компании столкнулись с увеличением сроков поставок, ограничениями на загрузку драйверов и отсутствием официальной поддержки оборудования NVIDIA, графические ускорители которой традиционно используются при построении ИИ-инфраструктуры.

В этих условиях бизнесу приходится пересматривать привычные подходы и искать альтернативные технологические решения.

Институт искусственного интеллекта МФТИ провёл комплексное исследование рынка альтернативных ускорителей, преимущественно китайского производства. В рамках работы специалисты изучали архитектурные особенности оборудования, состояние драйверов, совместимость с популярными фреймворками и поведение ускорителей под нагрузкой при выполнении различных задач — от работы с большими языковыми моделями и системами компьютерного зрения до распределённых вычислений.

По итогам испытаний наилучшие результаты показали видеокарты s4000 от Moore Threads и C500 от MetaX. Они продемонстрировали высокую производительность и стабильную работу во всех ключевых сценариях, включая длительную непрерывную нагрузку. В ряде тестов их производительность оказалась сопоставимой с NVIDIA A100, а в отдельных случаях — даже превосходила её.

«Мы оценивали скорость и воспроизводимость вычислений, устойчивость при росте нагрузки и стабильность поведения моделей на разных типах ускорителей. Эти параметры определяют пригодность систем для длительной эксплуатации. По итогам исследований мы сформировали программно-аппаратные конфигурации, обеспечивающие необходимую производительность языковых моделей на альтернативных платформах. Такой подход формирует предсказуемый жизненный цикл ИИ-решений и позволяет компаниям системно планировать эксплуатацию систем в собственных контурах», — рассказал научный директор Института искусственного интеллекта МФТИ Юрий Визильтер.

В МФТИ пообещали продолжить тестирование новых поколений ускорителей, а также подготовку практических рекомендаций по их использованию для решения типовых задач.

RSS: Новости на портале Anti-Malware.ru