Незащищенные базы сливали данные 60 млн пользователей LinkedIn

Незащищенные базы сливали данные 60 млн пользователей LinkedIn

Незащищенные базы сливали данные 60 млн пользователей LinkedIn

На просторах Сети были найдены восемь незащищенных баз данных, раскрывающих информацию приблизительно 60 миллионов пользователей социальной сети для деловых контактов — LinkedIn. Помимо прочей информации, в базах были указаны адреса электронной почты зарегистрированных в LinkedIn людей.

Первым обратил внимание на странные базы данных исследователь Сеньям Джейн из некоммерческой организации GDI.foundation. Джейн сообщил, что содержащие информацию пользователей LinkedIn базы то исчезали, то снова появлялись в Сети под разными IP-адресами.

«Мой анализ показал, что данные удалялись, а затем загружались на другой IP-адрес ежедневно. Спустя какое-то время база либо становилась недоступна, либо я не мог получить доступ к этому конкретному IP. Это очень странное поведение», — объясняет эксперт.

Суммарно во всех восьми базах содержалась информация приблизительно 60 миллионов пользователей LinkedIn. К счастью, ничего личного не утекло, это всего лишь публичные данные, которые были собраны с какой-то целью.

Общий объем баз данных 229 Гб, а размер каждой варьируется между 25 Гб и 32 Гб.

По словам Джейн, ему удалось проанализировать одну из записей, принадлежащих аккаунту конкретного пользователя LinkedIn. В результате в ней нашлись следующие данные: идентификатор, URL профиля, места работы, места учебы, геолокация, перечисленные навыки, время последнего обновления профиля.

Также в базах содержались адреса электронной почты, на которые были зарегистрированы учетные записи LinkedIn. В этом случае непонятно, как эти данные попали в базы, так как настройки многих пользователей запрещают публичный доступ к email-адресам.

Такие настройки профиля были у Лоуренса Абрамса из BleepingComputer, который также с удивлением обнаружил свой имейл в базах.

Более того, в незащищенных базах также указывалось, какой сервис электронной почты использует тот или иной пользователь. Эти значения имели вид «isProfessional», «isPersonal», «isGmail», «isHotmail» и «isOutlook».

Исследователи связались с компанией Amazon, которая выступала хостером незащищенных баз данных, и попросили ее закрыть доступ к данным пользователей LinkedIn. В LinkedIn заявили, что эти базы не принадлежат социальной сети.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

Мультиагентная система взяла на себя треть задач SOC в Yandex Cloud

Yandex Cloud сообщила, что автоматизировала значительную часть рутинных задач в своём центре мониторинга безопасности (SOC), внедрив мультиагентную систему на базе ИИ. По данным компании, около 39% операций, которые раньше занимали существенную долю рабочего времени аналитиков, теперь выполняют ИИ-помощники. Речь идёт о разборе алертов, первичном анализе инцидентов и поиске данных во внутренних базах.

Внутри SOC несколько ИИ-агентов работают параллельно: один сортирует входящие уведомления, другой перепроверяет данные и выявляет ошибки.

Такой подход позволяет снизить риск некорректных выводов и ускорить фильтрацию ложных срабатываний. По оценкам компании, время на обработку некорректных оповещений сократилось на 86%.

За два года Yandex Cloud прошла путь от экспериментов с ИИ в SOC до полноценной промышленной эксплуатации. Значимую роль сыграли RAG-технологии, которые позволяют моделям работать с актуальными документами и накопленной базой инцидентов. Мультиагентный подход, в свою очередь, сделал возможным разделить задачи между специализированными помощниками, способными учитывать контекст крупных корпоративных инфраструктур.

По словам Евгения Сидорова, директора по информационной безопасности Yandex Cloud, система помогает ускорять обнаружение угроз и автоматизировать обработку данных киберразведки. Он отмечает, что современные SOC-команды всё чаще работают на стыке ИБ и инструментов ИИ.

Мультиагентная система используется не только внутри компании, но и доступна клиентам облачной платформы — в частности, в сервисах Detection and Response и Security Deck. Их уже применяют организации из разных отраслей, включая финтех, здравоохранение и страхование, для автоматизации части процессов мониторинга.

ИИ-помощник, встроенный в сервисы, может разбирать инциденты пошагово, анализировать индикаторы компрометации и артефакты в контексте облачной инфраструктуры, а также предлагать варианты реагирования. Он также собирает дополнительные данные, например по IP-адресам, и формирует рекомендации по предотвращению дальнейших угроз.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

RSS: Новости на портале Anti-Malware.ru