Незащищенные базы сливали данные 60 млн пользователей LinkedIn

Незащищенные базы сливали данные 60 млн пользователей LinkedIn

Незащищенные базы сливали данные 60 млн пользователей LinkedIn

На просторах Сети были найдены восемь незащищенных баз данных, раскрывающих информацию приблизительно 60 миллионов пользователей социальной сети для деловых контактов — LinkedIn. Помимо прочей информации, в базах были указаны адреса электронной почты зарегистрированных в LinkedIn людей.

Первым обратил внимание на странные базы данных исследователь Сеньям Джейн из некоммерческой организации GDI.foundation. Джейн сообщил, что содержащие информацию пользователей LinkedIn базы то исчезали, то снова появлялись в Сети под разными IP-адресами.

«Мой анализ показал, что данные удалялись, а затем загружались на другой IP-адрес ежедневно. Спустя какое-то время база либо становилась недоступна, либо я не мог получить доступ к этому конкретному IP. Это очень странное поведение», — объясняет эксперт.

Суммарно во всех восьми базах содержалась информация приблизительно 60 миллионов пользователей LinkedIn. К счастью, ничего личного не утекло, это всего лишь публичные данные, которые были собраны с какой-то целью.

Общий объем баз данных 229 Гб, а размер каждой варьируется между 25 Гб и 32 Гб.

По словам Джейн, ему удалось проанализировать одну из записей, принадлежащих аккаунту конкретного пользователя LinkedIn. В результате в ней нашлись следующие данные: идентификатор, URL профиля, места работы, места учебы, геолокация, перечисленные навыки, время последнего обновления профиля.

Также в базах содержались адреса электронной почты, на которые были зарегистрированы учетные записи LinkedIn. В этом случае непонятно, как эти данные попали в базы, так как настройки многих пользователей запрещают публичный доступ к email-адресам.

Такие настройки профиля были у Лоуренса Абрамса из BleepingComputer, который также с удивлением обнаружил свой имейл в базах.

Более того, в незащищенных базах также указывалось, какой сервис электронной почты использует тот или иной пользователь. Эти значения имели вид «isProfessional», «isPersonal», «isGmail», «isHotmail» и «isOutlook».

Исследователи связались с компанией Amazon, которая выступала хостером незащищенных баз данных, и попросили ее закрыть доступ к данным пользователей LinkedIn. В LinkedIn заявили, что эти базы не принадлежат социальной сети.

Растущая мощность ИИ-моделей OpenAI ставит под угрозу кибербезопасность

Компания OpenAI предупреждает, что ее ИИ-модели стремительно расширяют возможности, которые пригодны для нужд киберобороны, но в тоже время повышают риски в случае злоупотребления, и это нельзя не учитывать.

Так, проведенные в прошлом месяце CTF-испытания GPT-5.1-Codex-Max показали результативность 76% — почти в три раза выше, чем GPT-5 на тех же задачах в августе (27%).

Разработчик ожидает, что последующие ИИ-модели продолжат этот тренд, и их можно будет использовать для аудита кодов, патчинга уязвимостей, создания PoC-эксплойтов нулевого дня, а также тестирования готовности организаций к сложным, скрытным целевым атакам.

Во избежание абьюзов OpenAI принимает защитные меры: учит свои творения отвечать отказом на явно вредоносные запросы, мониторит их использование, укрепляет инфраструктуру, применяет EDR и Threat Intelligence, старается снизить риск инсайда, внимательно изучает обратную связь и наладила партнерские связи со специалистами по Red Teaming.

В скором времени компания с той же целью запустит программу доверенного доступа (trusted access), в рамках которой киберзащитники смогут с разной степенью ограничений пользоваться новыми возможностями выпускаемых моделей. В настоящее время их приглашают присоединиться к бета-тестированию ИИ-инструмента выявления / коррекции уязвимостей Aardvark, подав заявку на сайте OpenAI.

Для расширения сотрудничества с опытными специалистами по киберзащите будет создан консультационный Совет по рискам — Frontier Risk Council. Компания также взаимодействует с другими ИИ-исследователями через НКО Frontier Model Forum, работая над созданием моделей угроз и выявлением узких мест, способных создать препятствие ИИ-атакам.

RSS: Новости на портале Anti-Malware.ru