Машинное обучение позволяет обойти ReCAPTCHA

Машинное обучение позволяет обойти ReCAPTCHA

Машинное обучение позволяет обойти ReCAPTCHA

Исследователи из Колумбийского университета разработали автоматическую систему, которая успешно решает большинство каптч, предлагаемых сервисом Google reCAPTCHA. Такие каптчи используют тысячи сайтов, в том числе Google и Facebook.

Речь идёт о преодолении относительно свежей разновидности каптчи, для решения которой нужно выбрать из предложенного списка картинки, удовлетворяющие тому или иному требованию — например, фотографии водоёмов или сосудов с вином.

 

hero-recaptcha-demo

recaptcha

 

Задача решается в два этапа. На первом этапе система получает куки, при помощи которых Google может следить за её поведением, а затем какое-то время ведёт себя максимально человекообразно: посещает различные сайты со случайным интервалом, соблюдает суточный цикл и т.д. Это нужно для того, чтобы Google не заподозрил в ней робота. Роботам он выдаёт более сложные каптчи.

На втором этапе она разбирает каптчу и пытается понять, что изображено на предъявленных картинках. Для этого система использует несколько методов. Во-первых, она обращается к обратному поиску по изображениям в Google Images. Если поисковику известна эта картинка, он сообщает соответствующий текстовый запрос. Во-вторых, система прогоняет её через несколько классификаторов, доступных в виде бесплатных веб-сервисов или библиотек. В-третьих, она проверяет, не знакома ли ей эта картинка. Картинки, которые часто повторяются в разных каптчах, разработчики описали вручную, пишет xakep.ru.

В итоге системе удаётся подобрать текстовые описания для каждой картинки. Трудность заключается в том, что найденные описания далеко не всегда совпадают с подсказкой. Эта проблема решена при помощи ещё одного классификатора, который пытается определить соответствие между словами в описаниях и текстом подсказки.

Систему протестировали на каптчах с сайтов Google и Facebook. Гугловские каптчи удалось обойти в 70,78 процентов случаев. Каптчи с Facebook оказались ещё проще. Система побеждала их в 83,5 процентах случаев. Среднее время решения каптчи составило 19,2 секунды.

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru