Исследователи нашли способ определять автоматически сгенерированные домены

Исследователи нашли способ определять автоматически сгенерированные домены

Ряд работающих в Сети ботнетов использует автоматически сгенерированные доменные имена серверов управления. Американским специалистам удалось обнаружить способ детектирования подобных имен; по их мнению, он пригодится системным администраторам в качестве системы раннего предупреждения об инфекции.



Ботнеты Conficker, Kraken, Torpig относятся к числу тех, которые применяют метод т.н. 'текучести доменных имен' для защиты своих управляющих элементов от экспертов по безопасности. Вредоносная сеть такого типа генерирует множество случайных доменов в соответствии с некоторым алгоритмом; эти домены используются для связи клиентов с командными центрами ботнета. Если вы хотите прекратить деятельность такой сети, вам потребуется захватить управление всеми этими доменными именами, что довольно сложно.


Однако исследователи уверены, что, поскольку имена наподобие joftvvtvmx.org, ejfjyd.mooo.com или mnkzof.dyndns.org созданы по определенному алгоритму, то их можно успешно определять и отличать от других, легитимных доменов. Если пропускать через такой детектор весь DNS-трафик, идущий наружу из ЛВС предприятия, то можно быстро и эффективно определить наличие инфекции в сети.


"Таким образом, предложенный нами метод может выявлять присутствие ботнет-клиентов; администратор ЛВС будет способен прервать связь между рабочими станциями и контрольными серверами ботнета посредством отфильтровывания DNS-запросов на разрешение алгоритмически сгенерированных доменных имен", - говорится в работе, представленной на конференции ACM Internet Measurement Conference в Австралии.


Указанный метод задействует некоторые приемы из теории обнаружения сигналов и статистического самообучения; с его помощью можно детектировать имена, алгоритмы создания которых основаны на псевдослучайных последовательностях, словарных единицах и ложных словах. Сообщается, что на выборке из 500 доменных имен был достигнут стопроцентный уровень выявления без ложных срабатываний; при объеме выборки в 50 доменов также были успешно обнаружены все автоматически сгенерированные имена, однако количество "ложных тревог" составило 15%.


The Register

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

Мультиагентная система взяла на себя треть задач SOC в Yandex Cloud

Yandex Cloud сообщила, что автоматизировала значительную часть рутинных задач в своём центре мониторинга безопасности (SOC), внедрив мультиагентную систему на базе ИИ. По данным компании, около 39% операций, которые раньше занимали существенную долю рабочего времени аналитиков, теперь выполняют ИИ-помощники. Речь идёт о разборе алертов, первичном анализе инцидентов и поиске данных во внутренних базах.

Внутри SOC несколько ИИ-агентов работают параллельно: один сортирует входящие уведомления, другой перепроверяет данные и выявляет ошибки.

Такой подход позволяет снизить риск некорректных выводов и ускорить фильтрацию ложных срабатываний. По оценкам компании, время на обработку некорректных оповещений сократилось на 86%.

За два года Yandex Cloud прошла путь от экспериментов с ИИ в SOC до полноценной промышленной эксплуатации. Значимую роль сыграли RAG-технологии, которые позволяют моделям работать с актуальными документами и накопленной базой инцидентов. Мультиагентный подход, в свою очередь, сделал возможным разделить задачи между специализированными помощниками, способными учитывать контекст крупных корпоративных инфраструктур.

По словам Евгения Сидорова, директора по информационной безопасности Yandex Cloud, система помогает ускорять обнаружение угроз и автоматизировать обработку данных киберразведки. Он отмечает, что современные SOC-команды всё чаще работают на стыке ИБ и инструментов ИИ.

Мультиагентная система используется не только внутри компании, но и доступна клиентам облачной платформы — в частности, в сервисах Detection and Response и Security Deck. Их уже применяют организации из разных отраслей, включая финтех, здравоохранение и страхование, для автоматизации части процессов мониторинга.

ИИ-помощник, встроенный в сервисы, может разбирать инциденты пошагово, анализировать индикаторы компрометации и артефакты в контексте облачной инфраструктуры, а также предлагать варианты реагирования. Он также собирает дополнительные данные, например по IP-адресам, и формирует рекомендации по предотвращению дальнейших угроз.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

RSS: Новости на портале Anti-Malware.ru