Банда ИИ-ботов взломала половину тестовых сайтов через эксплойт 0-day

Банда ИИ-ботов взломала половину тестовых сайтов через эксплойт 0-day

Банда ИИ-ботов взломала половину тестовых сайтов через эксплойт 0-day

Исследователям из Иллинойского университета (UIUC) удалось повысить эффективность автономных ИИ-взломщиков, использующих уязвимости нулевого дня, сгруппировав их и распределив роли. Созданный с этой целью многоагентный фреймворк получил имя HPTSA.

Ранее та же команда исследователей доказала, что боты на основе больших языковых моделей (БЯМ, LLM) могут автономно находить уязвимости и эксплуатировать их с успехом до 87%. Кроме того, недавно мы рассказывали об уязвимостях и рисках, связанных с большими языковыми моделями.

Однако, действуя в одиночку, такие взломщики тратят много времени на поиск лазеек и планирование атак; объединив их усилия по методу HPTSA (PDF), можно улучшить производительность в 4,5 раза.

Новый эксперимент был поставлен с использованием таких же ботов — на основе GPT-4. Во главе выстроенной иерархии стоял агент-планировщик, который проверял страницы сайта (реального, но с возможностью эксплойта в сэндбокс-окружении, чтобы пользователи не пострадали) и передавал результат агенту-менеджеру. Этот тимлидер направлял «заказ» нужному исполнителю, и тот уже применял эксплойт.

 

Все ИИ-агенты имели доступ к стимулу-подсказке, инструментам (Microsoft.Playwright для доступа к сайтам, терминал Windows, средства управления файлами) и документам (описания незакрытых уязвимостей, собранные из открытых источников; на самостоятельный поиск был введен запрет).

Для тестирования исследователи создали новый набор из 15 уязвимостей разной степени опасности в opensource-софте. В итоге HPTSA показал результативность до 53%, превзойдя результаты одиночного GPT-4 с доступом к информации о дырах в 1,4 раза, без доступа — в 4,5 раза. Сканеры уязвимостей ZAP и MetaSploit все тесты провалили.

«Уже сейчас ИИ используется как черными, так и белыми хакерами, — комментирует Вадим Матвиенко, руководитель лаборатории исследований кибербезопасности аналитического центра «Газинформсервиса». — Поэтому важно быть готовыми быстро реагировать на новые угрозы. В этой задаче помогают системы выявления аномалий на основе машинного обучения».

Атакующие прячут зловред в эмодзи и обходят ИИ-фильтры

Киберпреступники стали чаще использовать эмодзи и другие особенности Unicode, чтобы прятать вредоносный код, обходить фильтры и ускользать даже от ИИ-защиты. Новый тренд уже получил название emoji smuggling — «контрабанда через эмодзи».

Суть проста: злоумышленники кодируют команды и данные в символах, которые выглядят безобидно.

Это могут быть эмодзи, похожие друг на друга буквы из разных алфавитов (гомоглифы), невидимые символы Unicode или специальные знаки, меняющие порядок отображения текста. В итоге человек видит одно, а система обрабатывает совсем другое.

Один из популярных приёмов — подмена символов в доменах. Например, «apple.com» можно зарегистрировать с кириллическими буквами, которые визуально почти не отличаются от латиницы. В браузере адрес выглядит привычно, но ведёт на фишинговую страницу. Такие IDN-гомографические атаки известны давно, но сейчас они становятся частью более сложных схем.

Другой класс трюков — невидимые символы вроде Zero Width Space (U+200B). Они не отображаются на экране, но меняют структуру строки. Это позволяет «сломать» простые сигнатурные фильтры и при этом сохранить работоспособность кода. Исследователи уже показали инструменты, с помощью которых можно спрятать целый JavaScript-модуль в «пустом» файле за счёт нулевой ширины символов.

Отдельная тема — использование эмодзи как контейнера для данных. За счёт особенностей Unicode, тегов и вариационных селекторов можно зашифровать команды внутри последовательности иконок. Для логов и систем мониторинга это выглядит как обычные смайлики, но специальный декодер превращает их, например, в инструкции «скачать», «удалить», «выполнить».

Особенно тревожит исследователей влияние таких техник на ИИ-системы. По данным Mindgard, FireTail и других компаний, Unicode-манипуляции и «эмодзи-контрабанда» позволяют обходить фильтры безопасности LLM почти со 100-процентной эффективностью. Скрытая нагрузка может активироваться после простой расшифровки внутри модели, даже если видимый текст выглядит безобидно.

Проблема в том, что полностью запретить Unicode невозможно: бизнес глобален, пользователи пишут на разных языках, а эмодзи стали частью повседневного общения. Поэтому эксперты рекомендуют не блокировать символы, а внедрять более глубокую нормализацию и проверку входных данных.

RSS: Новости на портале Anti-Malware.ru