Банда ИИ-ботов взломала половину тестовых сайтов через эксплойт 0-day

Банда ИИ-ботов взломала половину тестовых сайтов через эксплойт 0-day

Банда ИИ-ботов взломала половину тестовых сайтов через эксплойт 0-day

Исследователям из Иллинойского университета (UIUC) удалось повысить эффективность автономных ИИ-взломщиков, использующих уязвимости нулевого дня, сгруппировав их и распределив роли. Созданный с этой целью многоагентный фреймворк получил имя HPTSA.

Ранее та же команда исследователей доказала, что боты на основе больших языковых моделей (БЯМ, LLM) могут автономно находить уязвимости и эксплуатировать их с успехом до 87%. Кроме того, недавно мы рассказывали об уязвимостях и рисках, связанных с большими языковыми моделями.

Однако, действуя в одиночку, такие взломщики тратят много времени на поиск лазеек и планирование атак; объединив их усилия по методу HPTSA (PDF), можно улучшить производительность в 4,5 раза.

Новый эксперимент был поставлен с использованием таких же ботов — на основе GPT-4. Во главе выстроенной иерархии стоял агент-планировщик, который проверял страницы сайта (реального, но с возможностью эксплойта в сэндбокс-окружении, чтобы пользователи не пострадали) и передавал результат агенту-менеджеру. Этот тимлидер направлял «заказ» нужному исполнителю, и тот уже применял эксплойт.

 

Все ИИ-агенты имели доступ к стимулу-подсказке, инструментам (Microsoft.Playwright для доступа к сайтам, терминал Windows, средства управления файлами) и документам (описания незакрытых уязвимостей, собранные из открытых источников; на самостоятельный поиск был введен запрет).

Для тестирования исследователи создали новый набор из 15 уязвимостей разной степени опасности в opensource-софте. В итоге HPTSA показал результативность до 53%, превзойдя результаты одиночного GPT-4 с доступом к информации о дырах в 1,4 раза, без доступа — в 4,5 раза. Сканеры уязвимостей ZAP и MetaSploit все тесты провалили.

«Уже сейчас ИИ используется как черными, так и белыми хакерами, — комментирует Вадим Матвиенко, руководитель лаборатории исследований кибербезопасности аналитического центра «Газинформсервиса». — Поэтому важно быть готовыми быстро реагировать на новые угрозы. В этой задаче помогают системы выявления аномалий на основе машинного обучения».

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

Мультиагентная система взяла на себя треть задач SOC в Yandex Cloud

Yandex Cloud сообщила, что автоматизировала значительную часть рутинных задач в своём центре мониторинга безопасности (SOC), внедрив мультиагентную систему на базе ИИ. По данным компании, около 39% операций, которые раньше занимали существенную долю рабочего времени аналитиков, теперь выполняют ИИ-помощники. Речь идёт о разборе алертов, первичном анализе инцидентов и поиске данных во внутренних базах.

Внутри SOC несколько ИИ-агентов работают параллельно: один сортирует входящие уведомления, другой перепроверяет данные и выявляет ошибки.

Такой подход позволяет снизить риск некорректных выводов и ускорить фильтрацию ложных срабатываний. По оценкам компании, время на обработку некорректных оповещений сократилось на 86%.

За два года Yandex Cloud прошла путь от экспериментов с ИИ в SOC до полноценной промышленной эксплуатации. Значимую роль сыграли RAG-технологии, которые позволяют моделям работать с актуальными документами и накопленной базой инцидентов. Мультиагентный подход, в свою очередь, сделал возможным разделить задачи между специализированными помощниками, способными учитывать контекст крупных корпоративных инфраструктур.

По словам Евгения Сидорова, директора по информационной безопасности Yandex Cloud, система помогает ускорять обнаружение угроз и автоматизировать обработку данных киберразведки. Он отмечает, что современные SOC-команды всё чаще работают на стыке ИБ и инструментов ИИ.

Мультиагентная система используется не только внутри компании, но и доступна клиентам облачной платформы — в частности, в сервисах Detection and Response и Security Deck. Их уже применяют организации из разных отраслей, включая финтех, здравоохранение и страхование, для автоматизации части процессов мониторинга.

ИИ-помощник, встроенный в сервисы, может разбирать инциденты пошагово, анализировать индикаторы компрометации и артефакты в контексте облачной инфраструктуры, а также предлагать варианты реагирования. Он также собирает дополнительные данные, например по IP-адресам, и формирует рекомендации по предотвращению дальнейших угроз.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

RSS: Новости на портале Anti-Malware.ru