R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

Компания R-Vision опубликовала на GitHub исходный код модели для ранжирования индикаторов компрометации (IoC), которую можно использовать в системах управления данными о киберугрозах. Проект, предлагаемый вниманию ИБ-сообщества, распространяется по лицензии Apache License v2.0.

Информация об актуальных угрозах (Threat Intelligence) помогает организациям выстроить эффективную стратегию защиты от кибератак. К таким данным относятся IoC, описания техник и тактик злоумышленников, степень риска, связанного с конкретными угрозами.

Созданный в R-Vision прототип системы расчета репутации IoC использует алгоритм, предложенный (PDF) исследователями из Амстердамского университета. Их методика позволяет сократить число ложноположительных результатов при выделении и оценке IoC.

Скоринговая модель R-Vision определяет рейтинг IoC по трем основным параметрам: 

  • количество взаимосвязей между индикаторами и контекстом;
  • сравнительная скорость предоставления данных источником;
  • полнота данных в источнике (в сравнении с совокупностью данных из всех источников).

В модели также имеются дополнительные коэффициенты. Один из них, к примеру, позволяет учитывать присутствие IoC в списках известных ресурсов с чистой репутацией. Другой коэффициент дает возможность регулировать скорость устаревания рейтинга. Модель легко расширяется за счет добавления других коэффициентов, и каждому можно задать нужный вес в зависимости от конкретной задачи.

«Для эффективного противостояния киберпреступности необходимо обмениваться информацией о киберугрозах, — комментирует Антон Соловей, менеджер продукта R-Vision Threat Intelligence Platform. — Обладая широкой экспертизой в обработке и анализе индикаторов компрометации, мы стремимся вносить вклад в развитие ИБ-сообщества и делиться полезными наработками. Представленную модель можно рассматривать как академический проект или встроить в собственную систему управления данными Threat Intelligence для расчета репутации индикаторов компрометации и принятия решений о дальнейших действиях с ними на основе полученных оценок».

30-летняя уязвимость в libpng поставила под удар миллионы приложений

Анонсирован выпуск libpng 1.6.55 с патчем для опасной уязвимости, которая была привнесена в код еще на стадии реализации проекта, то есть более 28 лет назад. Пользователям и разработчикам советуют как можно скорее произвести обновление.

Уязвимость-долгожитель в библиотеке для работы с растровой графикой в формате PNG классифицируется как переполнение буфера в куче, зарегистрирована под идентификатором CVE-2026-25646 и получила 8,3 балла по шкале CVSS.

Причиной появления проблемы является некорректная реализация API-функции png_set_dither(), имя которой было со временем изменено на png_set_quantize(). Этот механизм используется при чтении PNG-изображений для уменьшения количества цветов в соответствии с возможностями дисплея.

Переполнение буфера возникает при вызове png_set_quantize() без гистограммы и с палитрой, в два раза превышающей максимум для дисплея пользователя. Функция в результате уходит в бесконечный цикл, и происходит чтение за границей буфера.

Эту ошибку можно использовать с целью вызова состояния отказа в обслуживании (DoS). Теоретически CVE-2026-25646 также позволяет получить закрытую информацию или выполнить вредоносный код, если злоумышленнику удастся внести изменения в структуру памяти до вызова png_set_quantize().

Уязвимости подвержены все версии libpng, с 0.90 beta (а возможно, и с 0.88) до 1.6.54. Ввиду широкого использования библиотеки пользователям настоятельно рекомендуется перейти на сборку 1.6.55 от 10 февраля 2026 года.

RSS: Новости на портале Anti-Malware.ru