Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

Вышла R-Vision UEBA 1.14 с расширенными возможностями сбора данных

R-Vision представила новую версию платформы для анализа поведения объектов и выявления аномалий — R-Vision UEBA 1.14 (ранее — R-Vision SENSE). В этом релизе разработчики ввели несколько значимых изменений, повышающих функциональные возможности продукта.

Одним из ключевых нововведений является интеграция с технологией R-Vision Endpoint, что позволяет расширить возможности сбора данных с конечных устройств.

Теперь платформа может собирать более широкий спектр событий и телеметрии из различных операционных систем: Windows, Linux и macOS. Это значительно увеличивает объём доступных данных для аналитиков сферы информационной безопасности и обеспечивает более качественные события для последующего анализа.

Кроме того, разработчики улучшили карточку объекта, добавив дополнительную информацию, включая технические характеристики объекта и связанные с ним сущности. Это обогащение информации позволяет специалистам быстрее получать доступ к объекту и полному контексту, что значительно ускоряет процесс поиска причин аномалий.

В новой версии также появилась новая вкладка «Аналитика за сутки» в карточке объекта. На этой вкладке отображается изменение рейтинга, аномалии и задействованные устройства за последние 24 часа. Аналитики могут быстро просмотреть все действия пользователей за последние сутки и определить, являются ли они аномальными, требующими дальнейшего расследования.

Помимо этого, платформа была дополнена новыми моделями данных и расширением списка атрибутов. Это позволяет получать больше контекста по событиям и проводить более детальный анализ при выявлении аномалий в корпоративной инфраструктуре.

Общая цель обновления платформы R-Vision UEBA 1.14 состоит в том, чтобы предоставить экспертам эффективные инструменты для оперативного получения важных артефактов, анализа поведения объектов и выявления аномалий. Все улучшения направлены на обеспечение быстрого и успешного выявления аномалий, позволяя аналитикам сократить время на обнаружение и изучение атак и принимать соответствующие меры по их предотвращению.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru