В Израиле придумали маску, защищающую от технологий распознавания лиц

В Израиле придумали маску, защищающую от технологий распознавания лиц

В Израиле придумали маску, защищающую от технологий распознавания лиц

На ткань или бумагу наносят определенный рисунок. Паттерн не даёт технологиям распознать человека в маске. Шаблон справляется с видеосистемами по всему миру, но исследователи говорят, что камеры можно “натаскать”.

Пандемия COVID-19 сделала ношение масок привычной практикой, что сначала сильно тормозило работу систем распознавания лиц по всему миру. Со временем технологии адаптировались — теперь обычная медицинская или любая дизайнерская маска не мешает установить личность.

Ученые из Бен-Гуриона и Тель-Авива решили проверить гипотезу: можно ли создать такую маску, которая не поддается системам распознавания лиц. 

Исследователи экспериментировали с разными рисунками и градиентами. В итоге они получили шаблон, который ставит в тупик любую FRT (Facial recognition technology). Маска по очертаниям напоминает строение черепа — на ткани прослеживается рот, нос, скулы и даже часть глаз. Всё это окрашено в сложный градиент “радужных” цветов. 

“Мы проверили эффективность нашей маски в полевых условиях, — говорят исследователи. — Система смогла идентифицировать только 3% участников. Пол не имеет значения”.

Человека в обычной маске камера узнает в 80% случаев. Ученые говорят, что придуманный шаблон не является единственно возможным. При желании можно разработать модель под каждую технологию, на которой сегодня работают мировые системы распознавания лиц.

Исследователи считают, что и с этой угрозой можно справиться. Например, настроить так системы, чтобы они расценивали любую надетую на лицо маску как простую медицинскую. Это поможет технике не “растеряться”. 

Еще один “рабочий” вариант — научить камеры восстанавливать нижнюю часть лица, ориентируясь только на верхнюю. 

“Существует популярное направление — генеративно-состязательная сеть (GAN), — рассказывает аспирант Алон Золфи, руководивший исследованием “враждебных” масок. — Оно использует известные “входные данные” и дорабатывает портрет. Правда, это “тяжелый” подход: он требует совершенно другой архитектуры технических решений и обучения. Большую роль в этом процессе играет и человек, который стоит за камерой”.

В отчёте (PDF) специалисты поделились ссылкой на видео, демонстрирующее эффективность их разработки. Мы приводим ролик ниже:

В МФТИ подобрали работающие альтернативы GPU NVIDIA

Институт искусственного интеллекта МФТИ оценил возможности альтернативных графических процессоров (GPU) от китайских производителей. Параллельно в Физтехе был создан Центр компетенций, основной задачей которого стала помощь бизнесу в построении инфраструктуры для работы с искусственным интеллектом.

Российские компании столкнулись с увеличением сроков поставок, ограничениями на загрузку драйверов и отсутствием официальной поддержки оборудования NVIDIA, графические ускорители которой традиционно используются при построении ИИ-инфраструктуры.

В этих условиях бизнесу приходится пересматривать привычные подходы и искать альтернативные технологические решения.

Институт искусственного интеллекта МФТИ провёл комплексное исследование рынка альтернативных ускорителей, преимущественно китайского производства. В рамках работы специалисты изучали архитектурные особенности оборудования, состояние драйверов, совместимость с популярными фреймворками и поведение ускорителей под нагрузкой при выполнении различных задач — от работы с большими языковыми моделями и системами компьютерного зрения до распределённых вычислений.

По итогам испытаний наилучшие результаты показали видеокарты s4000 от Moore Threads и C500 от MetaX. Они продемонстрировали высокую производительность и стабильную работу во всех ключевых сценариях, включая длительную непрерывную нагрузку. В ряде тестов их производительность оказалась сопоставимой с NVIDIA A100, а в отдельных случаях — даже превосходила её.

«Мы оценивали скорость и воспроизводимость вычислений, устойчивость при росте нагрузки и стабильность поведения моделей на разных типах ускорителей. Эти параметры определяют пригодность систем для длительной эксплуатации. По итогам исследований мы сформировали программно-аппаратные конфигурации, обеспечивающие необходимую производительность языковых моделей на альтернативных платформах. Такой подход формирует предсказуемый жизненный цикл ИИ-решений и позволяет компаниям системно планировать эксплуатацию систем в собственных контурах», — рассказал научный директор Института искусственного интеллекта МФТИ Юрий Визильтер.

В МФТИ пообещали продолжить тестирование новых поколений ускорителей, а также подготовку практических рекомендаций по их использованию для решения типовых задач.

RSS: Новости на портале Anti-Malware.ru