В Израиле придумали маску, защищающую от технологий распознавания лиц

В Израиле придумали маску, защищающую от технологий распознавания лиц

В Израиле придумали маску, защищающую от технологий распознавания лиц

На ткань или бумагу наносят определенный рисунок. Паттерн не даёт технологиям распознать человека в маске. Шаблон справляется с видеосистемами по всему миру, но исследователи говорят, что камеры можно “натаскать”.

Пандемия COVID-19 сделала ношение масок привычной практикой, что сначала сильно тормозило работу систем распознавания лиц по всему миру. Со временем технологии адаптировались — теперь обычная медицинская или любая дизайнерская маска не мешает установить личность.

Ученые из Бен-Гуриона и Тель-Авива решили проверить гипотезу: можно ли создать такую маску, которая не поддается системам распознавания лиц. 

Исследователи экспериментировали с разными рисунками и градиентами. В итоге они получили шаблон, который ставит в тупик любую FRT (Facial recognition technology). Маска по очертаниям напоминает строение черепа — на ткани прослеживается рот, нос, скулы и даже часть глаз. Всё это окрашено в сложный градиент “радужных” цветов. 

“Мы проверили эффективность нашей маски в полевых условиях, — говорят исследователи. — Система смогла идентифицировать только 3% участников. Пол не имеет значения”.

Человека в обычной маске камера узнает в 80% случаев. Ученые говорят, что придуманный шаблон не является единственно возможным. При желании можно разработать модель под каждую технологию, на которой сегодня работают мировые системы распознавания лиц.

Исследователи считают, что и с этой угрозой можно справиться. Например, настроить так системы, чтобы они расценивали любую надетую на лицо маску как простую медицинскую. Это поможет технике не “растеряться”. 

Еще один “рабочий” вариант — научить камеры восстанавливать нижнюю часть лица, ориентируясь только на верхнюю. 

“Существует популярное направление — генеративно-состязательная сеть (GAN), — рассказывает аспирант Алон Золфи, руководивший исследованием “враждебных” масок. — Оно использует известные “входные данные” и дорабатывает портрет. Правда, это “тяжелый” подход: он требует совершенно другой архитектуры технических решений и обучения. Большую роль в этом процессе играет и человек, который стоит за камерой”.

В отчёте (PDF) специалисты поделились ссылкой на видео, демонстрирующее эффективность их разработки. Мы приводим ролик ниже:

Рынок защиты ИИ в России к 2029 году может возрасти до 11 млрд рублей

В AppSec Solutions ожидают, что российский рынок средств защиты ИИ-систем будет расти в геометрической прогрессии. В 2026 году его объем превысит 1 млрд руб., а к 2029 году может составить 11 млрд рублей.

Прогнозы других аналитиков, с которыми ознакомился «Ъ», еще более оптимистичны: 3-4 млрд руб. в 2025 году, 25-30 млрд руб. в 2030-м.

Рынок защиты ИИ в России пока молод и ориентирован на B2B. Его развитие стимулируют осознание рисков, сопряженных с внедрением таких технологий, и рост числа угроз; наибольшим спросом пользуются средства анализа защищенности новомодных интеграций, способных нарушить безопасность корпоративных сетей.

Рынок GenAI в России тоже стремительно растет. По оценкам Onside и Just AI, в сравнении с прошлогодним показателем его объем возрос почти в пять раз и достиг 58 млрд руб., а к 2030 году может достичь 778 млрд рублей.

Как неоднократно отмечали эксперты, расширение использования ИИ породило новые риски. Зафиксированы утечки конфиденциальной информации, возможность ошибок в выдаче больших языковых моделей (БЯМ, LLM), манипуляции данными, используемыми для их обучения, а также случаи злонамеренного вмешательства в работу ИИ-систем.

В ходе беседы с журналистами представитель «Информзащиты» упомянул еще одну, совсем новую угрозу — маскировку кибератак под коммуникации LLM. По оценке ИБ-компании, новая уловка злоумышленников позволяет повысить скрытность целевых атак на 42%: мишени по умолчанию воспринимают LLM-трафик как доверенный, а традиционные меры защиты в применении к ИИ малоэффективны.

RSS: Новости на портале Anti-Malware.ru