В Израиле придумали маску, защищающую от технологий распознавания лиц

В Израиле придумали маску, защищающую от технологий распознавания лиц

В Израиле придумали маску, защищающую от технологий распознавания лиц

На ткань или бумагу наносят определенный рисунок. Паттерн не даёт технологиям распознать человека в маске. Шаблон справляется с видеосистемами по всему миру, но исследователи говорят, что камеры можно “натаскать”.

Пандемия COVID-19 сделала ношение масок привычной практикой, что сначала сильно тормозило работу систем распознавания лиц по всему миру. Со временем технологии адаптировались — теперь обычная медицинская или любая дизайнерская маска не мешает установить личность.

Ученые из Бен-Гуриона и Тель-Авива решили проверить гипотезу: можно ли создать такую маску, которая не поддается системам распознавания лиц. 

Исследователи экспериментировали с разными рисунками и градиентами. В итоге они получили шаблон, который ставит в тупик любую FRT (Facial recognition technology). Маска по очертаниям напоминает строение черепа — на ткани прослеживается рот, нос, скулы и даже часть глаз. Всё это окрашено в сложный градиент “радужных” цветов. 

“Мы проверили эффективность нашей маски в полевых условиях, — говорят исследователи. — Система смогла идентифицировать только 3% участников. Пол не имеет значения”.

Человека в обычной маске камера узнает в 80% случаев. Ученые говорят, что придуманный шаблон не является единственно возможным. При желании можно разработать модель под каждую технологию, на которой сегодня работают мировые системы распознавания лиц.

Исследователи считают, что и с этой угрозой можно справиться. Например, настроить так системы, чтобы они расценивали любую надетую на лицо маску как простую медицинскую. Это поможет технике не “растеряться”. 

Еще один “рабочий” вариант — научить камеры восстанавливать нижнюю часть лица, ориентируясь только на верхнюю. 

“Существует популярное направление — генеративно-состязательная сеть (GAN), — рассказывает аспирант Алон Золфи, руководивший исследованием “враждебных” масок. — Оно использует известные “входные данные” и дорабатывает портрет. Правда, это “тяжелый” подход: он требует совершенно другой архитектуры технических решений и обучения. Большую роль в этом процессе играет и человек, который стоит за камерой”.

В отчёте (PDF) специалисты поделились ссылкой на видео, демонстрирующее эффективность их разработки. Мы приводим ролик ниже:

Yandex B2B Tech добавила ИИ-инструменты для поиска уязвимостей в коде

Yandex B2B Tech обновила платформу для разработки SourceCraft, добавив новые ИИ-инструменты для работы с уязвимостями и командной разработки. Обновления уже доступны всем пользователям и ориентированы не только на индивидуальные проекты, но и на работу с крупными корпоративными кодовыми базами.

Главное новшество — усиление блока безопасности. На платформе появился ИИ-агент на базе SourceCraft Code Assistant, который автоматически проверяет код на уязвимости и оформляет найденные проблемы в виде карточек.

В каждой из них ИИ помогает разобраться, насколько риск серьёзный, каким образом уязвимость может быть использована и как её корректно исправить — с примерами безопасного кода. За счёт этого анализ, который раньше мог занимать часы и требовать участия профильных специалистов, теперь укладывается в минуты.

Дополнительно в SourceCraft появился центр контроля уязвимостей с интерактивными дашбордами. Они показывают, какие системы затронуты, какие типы уязвимостей встречаются чаще всего и где сосредоточены зоны повышенного риска. Это упрощает приоритизацию и помогает смотреть на безопасность не фрагментарно, а в масштабе всей разработки.

Обновления затронули и командную работу. ИИ-агент SourceCraft Code Assistant теперь автоматически формирует краткие описания изменений в коде, чтобы разработчикам было проще ориентироваться в правках коллег. Также в платформе появилась возможность фиксировать состав версий ПО и отслеживать их готовность, что делает процесс разработки более прозрачным и упрощает координацию между командами.

В Yandex B2B Tech отмечают, что в крупных организациях с сотнями разработчиков и тысячами репозиториев критически важны прозрачность рисков и управляемость процессов. По словам руководителя платформы SourceCraft Дмитрия Иванова, в дальнейшем платформа будет развиваться в сторону мультиагентных ИИ-помощников, которые смогут учитывать контекст всей компании, помогать командам взаимодействовать друг с другом и показывать руководству, как технические уязвимости влияют на бизнес-процессы.

RSS: Новости на портале Anti-Malware.ru