Российские эксперты разглядели риски использования GitHub Copilot хакерами

Российские эксперты разглядели риски использования GitHub Copilot хакерами

Российские эксперты разглядели риски использования GitHub Copilot хакерами

GitHub Copilot изначально создавался в помощь программистам, чтобы упростить работу с кодом. Однако специалисты в области кибербезопасности предупреждают, что основанный на нейросети сервис могут использовать авторы вредоносных программ.

Copilot, созданный GitHub на базе искусственного интеллекта, действует по принципу клавиатур на мобильных устройствах — дополняет строки и даже целые функции в коде.

Специалисты GitHub в конце июня представили этот сервис, а для его разработки потребовалась помощь OpenAI. Ожидается, что Copilot сможет существенно упростить девелоперам жизнь.

Как мы уже писали ранее, в процессе разработки сервиса специалисты тренировали его на миллиардах строк кода. И теперь, когда условный разработчик пишет код, GitHub Copilot выдаёт предложения, которыми можно воспользоваться для более продуктивного кодинга.

Парсинг закомментированных кусков помогает сервису понять, над чем именно разработчик работает в данный момент. На пример работы GitHub Copilot можно посмотреть здесь.

Российские эксперты в области кибербезопасности, слова которых передают «Известия», считают, что нововведение GitHub может пригодиться не только разработчикам софта, но и киберпреступникам. Во-первых, авторы вредоносного кода получают возможность писать его быстрее, во-вторых — наличие подобного сервиса предполагает появление новых создателей зловредов, поскольку эта процедура в целом упростилась.

Эксперт GIS, заместитель генерального директора — технический директор компании «Газинформсервис» Николай Нашивочников рассказал об опасности использования нового бота для программистов хакерами:

«С появлением автоматизированных средств разработки угрозы для безопасности приложений, несомненно, возрастают. Как мы видим, новые сервисы упрощают жизнь не только "белым" разработчикам, но и вирусописателям. Но кроме этой очевидной сентенции есть и другие вопросы, касающиеся информационной безопасности.

Следует учитывать, как проходит обучение сети, если «хакерам» удастся внедрить опасную конструкцию в систему "подсказок" Copilot и она начнёт предлагать разработчикам вставлять эту уязвимость в их код, в итоге мы можем получить более массовое распространение уязвимости.

Также специалисты говорят про возможность банальной кражи чужого кода. Примерно в 0,1% случаев код будет дословно взят из обучающей выборки. В остальных 99,9% случаев сервис использует обучающую выборку в качестве основы для синтеза чего-то нового. Граница не столь чётко определена, как хотелось бы GitHub».

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru