Новый инструмент распознавания лиц найдет профили в соцсетях

Новый инструмент распознавания лиц найдет профили в соцсетях

Новый инструмент распознавания лиц найдет профили в соцсетях

Исследователи из Trustwave выпустили новый инструмент с открытым исходным кодом, который использует распознавание лиц для отслеживания тем в социальных сетях. Инструмент получил имя Social Mapper. Эта система способна находить профили в Facebook, Instagram, Twitter, LinkedIn и других сетях на основе имени пользователя и изображения.

Само собой, подобный поиск можно осуществлять вручную, но автоматизированный процесс гарантирует, что он будет выполняться гораздо быстрее — система может одновременно искать профили сразу нескольких людей.

«Сбор информации онлайн — довольно трудоемкий процесс. Вот если бы его можно было автоматизировать и применить в массовом масштабе к сотням и тысячам людей», — объясняют в Trustwave.

Social Mapper не требует доступ к API социальных сетей — это огромный плюс, так как необходимость в API ограничивало использование инструментов роде Geofeedia. Таким образом, система выполняет поиск в специальном окне, а затем использует распознавание лица для сканирования первых 10-20 результатов, ища соответствия.

Минусом — в сравнении с основанными на API методами поиска — является скорость. По оценкам разработчиков, поиск списка из 1000 человек может занять более 15 часов.

В качестве результата система выдает таблицу подтвержденных аккаунтов для каждого имени. Просто идеальная схема для фишинговых кампаний и общего сбора информации.

Social Mapper в настоящее время доступен на GitHub.

В прошлом месяце Американский союз защиты гражданских свобод (ACLU) провел тестирование системы распознавания лиц Rekognition от Amazon. Результаты показали, что система ошибочно определила 28 членов Конгресса как уголовников.

Позже Amazon предложила решение проблемы использования системы Rekognition.

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru