В состав ботнета Mirai входят порядка 120 000 IoT-устройств

В состав ботнета Mirai входят порядка 120 000 IoT-устройств

В минувшие выходные автор трояна Mirai, известный под псевдонимом Anna-senpai, опубликовал исходные коды своего детища в открытом доступе, на портале Hack Forums. Исходные коды уже были перезалиты исследователями на GitHub (1 и 2).

По сути, Mirai работает просто: он сканирует интернет в поисках уязвимых для брутфорса и взлома IoT-устройств, доступных через telnet. Малварь поражает преимущественно камеры наблюдения, DVR и роутеры, а затем продолжает размножаться, подобно червю.

От DDoS-атак, осуществленных этим ботнетом недавно пострадал журналист Брайан Кребс и крупнейший в Европе хостинг-провайдер OVH. Пиковая мощность атак достигала 620 Гбит/с и более 1 Тб/с. Чтобы добиться таких результатов злоумышленники использовали UDP-, DNS- и HTTP-флуд, а также пакеты GRE (Generic Routing Encapsulation), что эксперты признали весьма необычным, пишет xakep.ru.

Теперь специалисты MalwareTech изучили работу трояна и связанного с ним ботнета и представили отчет в своем блоге. Для исследования эксперты подняли 500 серверов-ловушек, эмулирующих уязвимые IoT-девайсы, и собрали с них статистику. По их словам, оценки других специалистов были верны. Так, ранее представители OVH писали, что атаковавший их серверы ботнет насчитывает 145 607 камер и способен генерировать атаки мощностью до 1,5 Тб/с, используя tcp/ack, tcp/ack+psh и tcp/syn.

Выводы специалистов MalwareTech в целом совпадают с этими наблюдениями. Так, за двенадцатичасовой период исследователи зафиксировали порядка 72 000 уникальных IP-адресов, и 4000 новых IP появлялись каждый час. Из этого аналитики сделали вывод, что размеры ботнета весьма скромны – всего порядка 120 000 устройств в сутки. И хотя другие источники уверяют, что ботнет гораздо крупнее и называют цифры 1-1,5 млн ботов, с этим не согласны ни исследователи MalwareTech, ни специалисты компании Akamai.

«Mirai, который практически все игнорировали ранее, в силу простоты telnet-атак, на прошлой неделе стал едва ли не главным предметом обсуждения в СМИ по всему миру, а правоохранительные органы начали расследования, при поддержке множества международных компаний», — пишут исследователи. — «Весьма вероятно, что теперь мощные DDoS-атаки станут более распространенной практикой, так как хакеры будут находить все больше и уязвимых IoT-устройств или начнут заражать устройства, защищенные NAT. Производителям определенно пора прекратить выпускать устройства с глобальными паролями по умолчанию и переключиться на выпуск устройств со случайно сгенерированными паролями, указывая их на нижней части корпуса».

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

Новое решение Angara Security на базе ML повысит эффективность SOC

Специалисты компании Angara Security выпустили решение на базе нейронной сети, интегрирующееся с SIEM-системой. По словам разработчиков, новинка поможет повысить эффективность мониторинга в SOC.

Комбинированные слои, из которых состоит нейронная сеть, свойственны как сверточным сетям (Convolutional Neural Networks), так и рекуррентным (Recurrent Neural Networks).

Таким образом, разработка поможет дополнить стандартные методы анализа событий в информационной безопасности, а также с высокой точностью выявлять вредоносную активность по характерным паттернам.

В этом случае безопасники избавляются от необходимости писать отдельные правила детектирования для каждой новой утилиты или процедуры.

«ML-модели являются отличным вспомогательным инструментом в работе аналитиков. С одной стороны, они позволяют расширить возможности по детектированию активности злоумышленников, с другой — автоматизировать часть процессов и высвободить ресурсы для задач, требующих участия человека», — комментирует Артем Грибков, заместитель директора Angara SOC по развитию бизнеса.

Использованная Angara Security ML-модель может применяться в трёх сценариях. Например, для детектирования PowerShell-скриптов — одного из любимых инструментов киберпреступников.

Второй сценарий — обнаружение DGA-доменов и DNS-туннелирования. Зачастую классические методы анализа DNS-имен выдают ложноположительные срабатывания, а сверху ещё накладывается проблема доменных имён, похожих на легитимные. В Angara Security отмечают, что ML-решение справляется с этой задачей.

Наконец, третий сценарий — анализ журналов веб-серверов. ML-модель в этом случае может использоваться в качестве дополнения к WAF-системам или как альтернатива эшелонированной защиты веб-ресурсов.

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru