Вектор атаки Ghost Tap использует NFC для кражи денег с банковских карт

Вектор атаки Ghost Tap использует NFC для кражи денег с банковских карт

Вектор атаки Ghost Tap использует NFC для кражи денег с банковских карт

Киберпреступники придумали новый способ выводить деньги с украденных банковских карт, привязанных к системам вроде Apple Pay и Google Pay. Вектор, получивший название Ghost Tap, передаёт NFC-данные карт «денежным мулам» по всему миру.

Ghost Tap берёт за основу другой метод, о котором мы рассказывали в августе: Android-вредонос NGate задействовал компонент с открытым исходным кодом — «NFCGate».

Тем не менее Ghost Tap использует более мощную обфускацию и, соответственно, его сложнее детектировать. В этом случае злоумышленнику не нужна карта или устройство жертвы.

Вместо этого Ghost Tap подключает «денежных мулов» в различных удалённых местоположениях. Такие «мулы» должны взаимодействовать с PoS-терминалами.

О новом векторе рассказали специалисты компании Threat Fabric. По их данным, в последнее время наблюдается скачок в использовании этой техники в реальных кибератаках.

А вот так выглядит поиск «денежных мулов» на одном из киберпреступных форумов:

 

Для начала атакующему нужно выкрасть данные банковской карты и перехватить одноразовый пароль, который нужен для регистрации виртуального кошелька в Apple Pay и Google Pay.

Для первого пункта можно использовать, например, банковский троян, накладывающий фейковые окна поверх легитимных приложений, или тот же кейлогер. А одноразовый код можно получить с помощью социальной инженерии или того же вредоноса, мониторящего СМС-сообщения.

Атакующие по-прежнему полагаются на инструмент NFCGate, который используется для передачи информации платёжных карт. Только в этом случае подключается также сервер-ретранслятор, который отправляет данные в сеть «денежных мулов».

Дефекты кристаллов можно использовать для масштабирования кубитов

Исследователи из Университета штата Огайо и Чикагского университета выяснили, что дефекты кристаллической решётки алмаза — так называемые дислокации — могут быть использованы для масштабирования квантовых вычислителей.

В ходе работы учёные изучали азотно-замещённые вакансии (NV-центры) в кристаллах алмаза. Именно этот материал сегодня считается одной из ключевых платформ для твердотельных кубитов, лежащих в основе квантовых вычислительных систем.

Моделирование показало, что NV-центры способны улучшать квантовые свойства вблизи кристаллических дефектов. Кроме того, такие центры обладают уникальными оптическими характеристиками, что делает их перспективными не только для квантовых вычислений, но и для создания квантовых сенсоров.

Результаты исследования также показали, что NV-центры не нарушают оптический цикл и не мешают считыванию спиновых состояний. Более того, они сохраняют квантовую когерентность значительно дольше, чем в химически чистом алмазе. Учёные объясняют это тем, что дефекты формируют так называемые «часовые переходы», которые защищают кубит от внешнего магнитного шума.

«Хотя не все варианты расположения дефектов подходят для выполнения квантовых операций, результаты показывают, что значительная их часть соответствует требованиям для функционирования кубитов», — отметил соавтор работы Юй Цзинь, научный сотрудник Института Флэтайрон.

Авторы также указывают, что схожими свойствами обладают дефекты и в других материалах. По их мнению, управляемое размещение таких дефектов открывает новые возможности для дальнейшего масштабирования квантовых вычислений.

RSS: Новости на портале Anti-Malware.ru