Фреймворк Sliver в пакетах PyPI используется в атаках на macOS-устройства

Фреймворк Sliver в пакетах PyPI используется в атаках на macOS-устройства

Фреймворк Sliver в пакетах PyPI используется в атаках на macOS-устройства

С помощью нового пакета, имитирующего популярную библиотеку Requests в каталоге Python (PyPI), злоумышленники атакуют устройства на macOS, используя фреймворк Sliver C2 для получения первоначального доступа к корпоративным сетям.

Специалисты Phylum обнаружили кампанию, включающую в себя несколько этапов и уровней обфускации, в том числе использование стеганографии в файле изображения PNG для скрытой установки полезной нагрузки Sliver.

По предварительной информации, вредоносный пакет был удален из PyPI. Но сам факт его обнаружения доказывает, что Sliver всё чаще используется злоумышленниками для удаленного доступа к корпоративным сетям.

Sliver является кросс-платформенным (Windows, macOS, Linux) набором инструментов на языке Go с открытым исходным кодом, предназначенным для работы «красных команд», имитирующих действия противника при тестировании защитных систем.

Sliver обладает рядом преимуществ: генерация пользовательских имплантов, возможности управления с сервера (C2), инструменты-скрипты для постэксплуатации и богатые возможности эмуляции атак.

Именно поэтому начиная с 2022 года хакеры стали все чаще использовать данный имплант как альтернативу коммерческому фреймворку для пентеста — Cobalt Strike, который, в отличие от Sliver, стало легче обнаруживать и блокировать.

Специалисты из SentinelOne также стали замечать, что целью Sliver становятся устройства на macOS. Они обнаружили имплант, установленный в поддельном приложении VPN.

Спустя год стало понятно, что внедрение Sliver хакерами неуклонно растет, когда фреймворк был замечен в BYOVD-атаках и операциях с программами-вымогателями.

В феврале 2024 года специалисты по кибербезопасности CISA и ФБР подтвердили растущий статус Sliver как одного из распространенных имплантов, используемых хакерами для взлома сетей.

В кампании, замеченной Phylum, атака начинается с вредоносного пакета Python для macOS под названием «requests-darwin-lite», который представляется как полноценный форк популярной библиотеки Requests.

Размещенный на PyPI пакет содержит бинарник Sliver в файле изображения PNG размером 17 МБ с логотипом Requests.

Во время установки на macOS класс PyInstall выполняет декодирование base64-кодированной строки для запуска команды (ioreg), которая извлекает UUID (универсальный уникальный идентификатор) системы. Он проверяет, что пакет устанавливается на реальную цель, сравнивая с заранее определенным UUID.

Вредоносный файл setup.py

Источник: Phylum

 

Если UUID совпадает, двоичный файл Go внутри PNG-файла считывается и извлекается из определенного смещения в файле.

Двоичный файл Sliver записывается в локальный файл, но уже с измененными правами доступа к файлу для того, чтобы сделать его исполняемым, и в конечном счете запускается в фоновом режиме.

Сразу после сообщения Phylum команде PyPI о requests-darwin-lite, пакет был изъят из доступа. К вредоносным версиям относились 2.27.1 и 2.27.2.

По мнению экспертов Phylum, данная кампания была целенаправленной, учитывая проверку UUID. Возможно, именно поэтому злоумышленники вернули пакет в безвредное состояние, чтобы не привлекать внимания.

В прошлом месяце исследователи обнаружили новую широкомасштабную вредоносную кампанию под названием SteganoAmor. Злоумышленники скрывали вредоносный код внутри изображений с помощью стеганографии с целью доставки различных вредоносных инструментов на целевые системы. 

Хакеры совершили более 320 атак, направленных на различные отрасли и страны.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Тест Softline: Яндекс Браузер выявил 85 из 100 фишинговых сайтов

Эксперты ГК Softline провели ежегодное исследование, чтобы проверить, насколько хорошо популярные браузеры распознают фишинговые сайты — страницы, с помощью которых злоумышленники крадут личные данные пользователей. В тесте участвовали Chrome, Яндекс Браузер, Firefox, Opera, Edge, Safari на iOS, а также предустановленные Samsung Internet и Mi Browser на Android.

Согласно результатам проверки, Яндекс Браузер оказался самым эффективным: десктопная версия обнаружила 85 из 100 мошеннических сайтов, а мобильная — более 75.

Для сравнения, Chrome с антифишинговым расширением на десктопе выявил 44 угрозы, а без него — всего 8. Остальные браузеры показали следующие результаты:

  • Safari — 9 выявленных страниц,
  • Firefox — 8,
  • Opera — 6,
  • Edge — 5.

На платформах Android показатели оказались самыми низкими: Mi Browser определил два фишинговых сайта, а Samsung Internet — всего один. При этом браузеры на iOS продемонстрировали заметное улучшение по сравнению с прошлым годом.

Как проводилось исследование

Тестирование проходило в условиях, максимально приближенных к реальным. На смартфонах использовались физические устройства, а не эмуляторы. В основу легла выборка из 100 актуальных фишинговых страниц, предоставленных сервисом CyberDef от Infosecurity. Сайты с невалидными сертификатами исключались, чтобы результаты не искажались.

Особое внимание уделялось скорости реакции браузеров. Эксперты отправляли на проверку новые фишинговые сайты в течение нескольких часов после их обнаружения — ведь такие страницы живут недолго и часто исчезают уже в первый день.

Кого чаще всего подделывают

Почти половина (46%) фишинговых сайтов имитировала банки и инвестиционные платформы, ещё 13% — страницы соцсетей и мессенджеров, а 12% — опросы и голосования.

По словам специалистов, злоумышленники активно эксплуатируют известные бренды и актуальные темы вроде искусственного интеллекта и криптовалют, а схемы становятся всё сложнее.

«Сегодня мошеннические кампании часто состоят из нескольких этапов: сначала пользователя заманивают под видом розыгрыша или курса, а потом под предлогом оплаты или подтверждения выманивают деньги и данные. Чтобы казаться надёжными, такие сайты нередко показывают фейковые уведомления о “защищённом соединении”», — отмечают эксперты Softline.

Что используют браузеры для защиты

Современные браузеры применяют разные технологии против фишинга. Например, Safe Browsing в Chrome, SmartScreen в Edge и нейросетевые фильтры в Яндекс Браузере.

В отличие от старых систем, которые полагались на «чёрные списки» сайтов, новые механизмы анализируют содержимое страницы в момент загрузки, что помогает быстрее реагировать на появление фальшивых ресурсов.

Главный вывод исследования: даже при развитии встроенных технологий защиты пользователям стоит оставаться внимательными и не вводить личные данные на сомнительных сайтах, особенно если ссылка пришла в сообщении или письме.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru