Ученые предложили выявлять голосовые дипфейки с помощью флюидодинамики

Ученые предложили выявлять голосовые дипфейки с помощью флюидодинамики

Ученые предложили выявлять голосовые дипфейки с помощью флюидодинамики

В университете Флориды изучили достижения артикуляционной фонетики и разработали новую технику распознавания дипфейк-аудио — по отсутствию ограничений, влияющих на работу голосового аппарата человека. Созданный в ходе исследования детектор способен по одной фразе определить подмену с точностью 92,4%.

Создание дипфейков стало возможным лишь с развитием технологий машинного обучения. Новый инструментарий, позволяющий создавать убедительные имитации, уже по достоинству оценили злоумышленники: собрав ПДн из открытых источников, они проводят пробные атаки, в том числе для получения финансовой выгоды.

Инциденты с использованием дипфейков снижают доверие к цифровым средствам коммуникации, но пока редки. Тем не менее, новую угрозу нельзя сбрасывать со счетов, и эксперты озаботились совершенствованием средств подтверждения личности.

Выявить поддельное видео, созданное с помощью ИИ, можно путем анализа визуальных артефактов — по разнице в мимике (частоте моргания, например) или различию приметных частей лица (подбородка, бровей, скул, усов и бороды, веснушек, родимых пятен). Качественный синтез речи, используемый с неблаговидной целью, представляет более серьезную угрозу, так как дистанционное общение зачастую происходит только вербально — по телефону, с использованием радиосвязи или аудиозаписи.

Защититься от таких высокотехнологичных атак, по мнению ученых из Флориды, можно с помощью газодинамики — оценкой речевого тракта говорящего, который можно воссоздать средствами моделирования. Дело в том, что на человеческую речь влияют анатомические особенности его голосового аппарата: связок, языка, челюстей, губ. При генерации звуков (фонем) эти участники процесса используются по-разному, но всегда в пределах лимитов, заданных природой.

Исследование показало, что звуковые дипфейки не учитывают такие ограничения. Более того, при реконструкции речевого тракта они показали схожие результаты, далекие от реальности:

 

Способность современного противника ответить на этот вызов университетские исследователи оценили как близкую к нулю. О своем методе выявления дипфейк-аудио они рассказали (PDF) в прошлом месяце на конференции USENIX по безопасности, которая прошла в Бостоне. Созданный в ходе исследования программный код выложен в общий доступ на GitHub.

ФСТЭК России определилась со списком угроз для ИИ-систем

В банке данных угроз (БДУ), созданном ФСТЭК России, появился раздел о проблемах, специфичных для ИИ. Риски в отношении ИБ, связанные с качеством софта, ML-моделей и наборов обучающих данных, здесь не рассматриваются.

Угрозы нарушения конфиденциальности, целостности или доступности информации, обрабатываемой с помощью ИИ, разделены на две группы — реализуемые на этапе разработки / обучения и в ходе эксплуатации таких систем.

В инфраструктуре разработчика ИИ-систем оценки на предмет безопасности информации требуют следующие объекты:

 

Объекты, подлежащие проверке на безопасность в инфраструктуре оператора ИИ-системы:

 

Дополнительно и разработчикам, и операторам следует учитывать возможность утечки конфиденциальной информации, а также кражи, отказа либо нарушения функционирования ML-моделей.

Среди векторов возможных атак упомянуты эксплойт уязвимостей в шаблонах для ИИ, модификация промптов и конфигурации агентов, исчерпание лимита на обращения к ИИ-системе с целью вызвать отказ в обслуживании (DoS).

В комментарии для «Ведомостей» первый замдиректора ФСТЭК Виталий Лютиков пояснил, что составленный ими перечень угроз для ИИ ляжет в основу разрабатываемого стандарта по безопасной разработке ИИ-систем, который планировалась вынести на обсуждение до конца этого года.

Представленная в новом разделе БДУ детализация также поможет полагающимся на ИИ госструктурам и субъектам КИИ данных скорректировать процессы моделирования угроз к моменту вступления в силу приказа ФТЭК об усилении защиты данных в ГИС (№117, заработает с марта 2026 года).

Ужесточение требований регулятора в отношении безопасности вызвано ростом числа атак, в том числе на ИИ. В этих условиях важно учитывать не только возможности ИИ-технологий, но и сопряженные с ними риски.

RSS: Новости на портале Anti-Malware.ru