Процессоры AMD уязвимы перед новым вектором атаки — SQUIP

Процессоры AMD уязвимы перед новым вектором атаки — SQUIP

Процессоры AMD уязвимы перед новым вектором атаки — SQUIP

Команда специалистов опубликовала исследование, описывающее первый вектор атаки по сторонним каналам, в котором задействована очередь планировщика в современных процессорах. В случае с CPU от AMD атаку назвали “SQUIP”.

Суперскалярные процессоры, как известно, полагаются на очередь планировщика при выполнении инструкций. Если у CPU от Intel есть только одна очередь, то процессоры Apple и AMD располагают отдельными очередями для каждой единицы запуска.

У AMD есть также одновременная многопоточность, когда ядро CPU разделяется на множество логических ядер или потоков, которые выполняют независимые друг от друга инструкции.

Как выяснили исследователи, атакующий, располагающий доступом к тому же ядру, что и пользователь, но находясь в другом SMT-потоке, может замерить время простоя планировщика и достать конфиденциальную информацию. Этот вектор атаки назвали SQUIP (Scheduler Queue Usage via Interference Probing).

«Если злоумышленник воспользуется SQUIP и будет находиться на том же хосте и CPU, что и жертва, он получит доступ к выполняемым инструкциям. Брешь существует из-за разделённого типа планировщика в процессорах AMD», — объясняет Дэниел Грасс из Грацского технического университета.

Несмотря на то что Apple также использует метод разделения очереди планировщика в процессорах M1, яблочная продукция не затронута SQUIP. Штука в том, что купертиновцы пока не имплементировали SMT. Тем не менее, если в будущем процессоры Apple начнут использовать SMT, для них SQUIP также может стать актуальной.

Исследователи продемонстрировали состоятельность выявленного вектора атаки, создав скрытый канал, который использовался для извлечения данных из виртуальной машины и соответствующего процесса. В результате эксперимент специалистов показал, что атакующий может вытащить ключ шифрования RSA-4096 полностью.

AMD получила уведомление об уязвимости в декабре 2021 года, после чего присвоила ей идентификатор CVE-2021-46778 и среднюю степень риска. Корпорация опубликовала сообщение, в котором предупреждает пользователей о том, что микроархитектуры Zen 1, Zen 2 и Zen 3 находятся в зоне риска.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru