Исследователи спрятали зловреда в модели нейросети, и это сработало

Исследователи спрятали зловреда в модели нейросети, и это сработало

Исследователи спрятали зловреда в модели нейросети, и это сработало

В Университете Китайской академии наук убедились, что использование технологии нейронных сетей для доставки вредоносного кода способно надежно скрыть его от антивирусов. Исследование показало, что в модели можно безбоязненно подменить до половины искусственных нейронов — потеря производительности составит менее 7%, и защитные сканеры вряд ли заметят присутствие зловреда.

Для экспериментов была выбрана (PDF) сверточная нейросеть AlexNet — классическая модель, зачастую используемая для проверки эффективности алгоритмов машинного зрения. Вооружившись несколькими образцами реальных вредоносов, исследователи по-разному прятали их в скрытых слоях сети, фиксируя процент замен и точность предсказаний при прогоне контрольных изображений.

В итоге оказалось, что в 178М-байтовую модель AlexNet можно внедрить до 36,9МБ стороннего кода с потерей производительности менее 1%. Проверка результатов с помощью 58 антивирусов из коллекции VirusTotal не дала ни одного положительного срабатывания.

Для проведения атаки злоумышленнику, со слов исследователей, нужно вначале построить нейросеть и потренировать ее на заранее подготовленном наборе данных. Можно также приобрести уже обученный образец, внедрить вредоносный код и убедиться, что его присутствие не влечет неприемлемую потерю производительности. Подготовленная модель публикуется в общедоступном хранилище и начинает раздаваться, например, как апдейт в рамках атаки на цепочку поставок.

Предложенный подход предполагает дизассемблирование вредоносного кода перед встраиванием в искусственные нейроны. Обратную сборку выполняет программа-загрузчик, запущенная на целевом устройстве. Исполнение зловреда при этом можно предотвратить, если настройки атакуемой системы предусматривают верификацию загружаемого ИИ-контента. Выявить непрошеного гостя сможет также статический или динамический анализ кода.

«Обнаружить такого зловреда с помощью антивирусов в настоящее время затруднительно, — комментирует известный ИБ-специалист Лукаш Олейник (Lukasz Olejnik). — Но причина лишь в том, что никому в голову не приходит искать его в подобном месте».

Эксперты предупреждают, что рост популярности технологии нейросетей открывает новые возможности для злоупотреблений. Ее можно использовать, например, для взлома CAPTCHA, троллинга, шантажа и мошенничества, а также засева бэкдоров (PDF). Исследование возможных сценариев абьюза ИИ — залог успешной борьбы с этой ИБ-угрозой.

Критическая уязвимость в TLP позволяет обойти защиту Linux

В популярной утилите TLP, которую многие владельцы ноутбуков на Linux используют для управления энергопотреблением, обнаружили критическую уязвимость. Причём проблема нашлась во время обычной проверки пакета командой SUSE Security Team и располагается во вполне штатном коде.

Брешь получила идентификатор CVE-2025-67859 и затрагивает версию TLP 1.9.0, где появился новый profiles daemon.

Этот демон работает с root-правами и управляет профилями питания через D-Bus. Задумка хорошая, но реализация подвела: в механизме аутентификации Polkit нашлась логическая ошибка, которая фактически позволяет обойти проверку прав.

Как объясняют исследователи, демон должен был строго проверять, кто именно отправляет команды. Но из-за ошибки любой локальный пользователь мог взаимодействовать с ним без должной аутентификации — а значит, менять системные настройки питания от имени root.

На этом сюрпризы не закончились. В ходе анализа специалисты SUSE нашли ещё несколько проблем, уже связанных с исчерпанием ресурсов. В частности, механизм profile hold, который позволяет временно «зафиксировать» профиль питания, оказался совершенно без валидации. Локальный пользователь мог создавать неограниченное количество таких блокировок, причём без прав администратора.

В итоге это открывает прямую дорогу к DoS-атаке: демон начинает захлёбываться от бесконечных записей в структуре данных, куда попадают числа, строки с причиной и идентификаторы приложений — всё это полностью контролируется клиентом.

Любопытно, что SUSE вспомнила похожую историю с демоном управления питанием в GNOME: аналогичную проблему находили ещё несколько лет назад. Отдельно исследователи отметили вопросы к механизму «куки», которыми отслеживаются profile hold. Формально речь шла о предсказуемости значений, но в сочетании с отсутствием лимитов это лишь расширяло поверхность атаки.

К счастью, реакция была быстрой. SUSE сообщила об уязвимостях разработчикам ещё в декабре, и в версии TLP 1.9.1 проблема уже закрыта. В частности, число одновременных profile hold теперь жёстко ограничено числом 16, что убирает риск истощения ресурсов.

RSS: Новости на портале Anti-Malware.ru