Исследователи спрятали зловреда в модели нейросети, и это сработало

Исследователи спрятали зловреда в модели нейросети, и это сработало

Исследователи спрятали зловреда в модели нейросети, и это сработало

В Университете Китайской академии наук убедились, что использование технологии нейронных сетей для доставки вредоносного кода способно надежно скрыть его от антивирусов. Исследование показало, что в модели можно безбоязненно подменить до половины искусственных нейронов — потеря производительности составит менее 7%, и защитные сканеры вряд ли заметят присутствие зловреда.

Для экспериментов была выбрана (PDF) сверточная нейросеть AlexNet — классическая модель, зачастую используемая для проверки эффективности алгоритмов машинного зрения. Вооружившись несколькими образцами реальных вредоносов, исследователи по-разному прятали их в скрытых слоях сети, фиксируя процент замен и точность предсказаний при прогоне контрольных изображений.

В итоге оказалось, что в 178М-байтовую модель AlexNet можно внедрить до 36,9МБ стороннего кода с потерей производительности менее 1%. Проверка результатов с помощью 58 антивирусов из коллекции VirusTotal не дала ни одного положительного срабатывания.

Для проведения атаки злоумышленнику, со слов исследователей, нужно вначале построить нейросеть и потренировать ее на заранее подготовленном наборе данных. Можно также приобрести уже обученный образец, внедрить вредоносный код и убедиться, что его присутствие не влечет неприемлемую потерю производительности. Подготовленная модель публикуется в общедоступном хранилище и начинает раздаваться, например, как апдейт в рамках атаки на цепочку поставок.

Предложенный подход предполагает дизассемблирование вредоносного кода перед встраиванием в искусственные нейроны. Обратную сборку выполняет программа-загрузчик, запущенная на целевом устройстве. Исполнение зловреда при этом можно предотвратить, если настройки атакуемой системы предусматривают верификацию загружаемого ИИ-контента. Выявить непрошеного гостя сможет также статический или динамический анализ кода.

«Обнаружить такого зловреда с помощью антивирусов в настоящее время затруднительно, — комментирует известный ИБ-специалист Лукаш Олейник (Lukasz Olejnik). — Но причина лишь в том, что никому в голову не приходит искать его в подобном месте».

Эксперты предупреждают, что рост популярности технологии нейросетей открывает новые возможности для злоупотреблений. Ее можно использовать, например, для взлома CAPTCHA, троллинга, шантажа и мошенничества, а также засева бэкдоров (PDF). Исследование возможных сценариев абьюза ИИ — залог успешной борьбы с этой ИБ-угрозой.

Анти-DDoS Роскомнадзора упал после кибератаки, но снова поднялся

Центр мониторинга и управления сетью связи общего пользования, созданный на базе Федерального государственного унитарного предприятия «Главный радиочастотный центр» (ФГУП «ГРЧЦ»), судя по всему, стал объектом кибератаки 31 декабря.

Телеграм-канал IEM SECURITY сегодня опубликовал короткий пост:

«ANTIDDOS BY ROSKOMNADZOR DOWNED, 200-150 RPS PER SECONDS».

 

Там же была ссылка на проверку доступности ресурса: https://check-host.net/check-report/35dfb445k983. Если пройти по этому URL, действительно видно, что в работе ресурса наблюдались проблемы.

 

Однако мы, попробовав зайти на сайт https://noc.gov.ru/ru/ напрямую, обнаружили, что всё прекрасно открывается. Видимо, специалисты уже успели восстановить работу веб-ресурса, с чем их и поздравляем.

RSS: Новости на портале Anti-Malware.ru