Исследователи из Стэнфорда определили опасность телефонных метаданных

Исследователи из Стэнфорда определили опасность телефонных метаданных

Исследователи из Стэнфорда определили опасность телефонных метаданных

Исследователи из Стэнфордского университета продемонстрировали, что из метаданных телефонных звонков легко извлечь важную персональную информацию, и рекомендуют затруднить их получение и анализ. Метаданные телефонного звонка — это дата, время и продолжительность, а также номера его участников.

Считается, что подобная информация не заслуживает такой же серьёзной защиты, как само содержание разговора. В США правоохранительным органам и спецслужбам куда проще получить доступ к метаданным подозреваемого, чем разрешение на прослушивание телефона.

Исследователи из Стэнфорда решили проверить, в самом ли деле метаданные столь безобидны. Для этого они разработали мобильное приложение, которое извлекает и отправляет им хранящиеся в телефоне метаданные. Его установили более 800 добровольцев. В результате в распоряжении учёных оказались сведения о 250 тысячах телефонных звонков и 1,2 миллионах текстовых сообщений, сообщает xakep.ru.

Оказалось, что сопоставляя телефонные номера с общедоступными справочниками, можно немало узнать об участниках эксперимента. Например, в метаданных одного из подопытных обнаружились звонки на номера врача-кардиолога, местной аптеки и службу поддержки устройства для мониторинга сердечной аритмии. Не нужно быть великим сыщиком, чтобы догадаться, что у этого человека больное сердце, и он страдает аритмией. Это медицинская информация, которая не только считается персональной с юридической точки зрения, но и подлежит особенно строгой защите по американским законам.

Другой участник эксперимента несколько раз звонил в магазин огнестрельного оружия, рекламирующий самозарядные винтовки, и обращался в службу поддержки крупного производителя именно таких винтовок. Скорее всего, он делал это не просто так, а потому, что у него есть самозарядная винтовка. Это тоже пример персональной информации.

Исследователи также обращают внимание, что метаданные одного подозреваемого тянут за собой метаданные неожиданно большого количества людей и организаций. Спецслужбы нередко запрашивают разрешение на изучение метаданных не только подозреваемого, но и абонентов на расстоянии двух «прыжков» от него. Иными словами, всех, кто общался с подозреваемым, и всех, кто общался с теми, кто общался с подозреваемым. На первый взгляд, подобные требования резонны, но эксперимент показывает, что таким образом за одним подозреваемым потянутся метаданные примерно 25 тысяч абонентов. Большинство из них заведомо непричастны к расследуемому преступлению.

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru