Исследователи из Стэнфорда определили опасность телефонных метаданных

Исследователи из Стэнфорда определили опасность телефонных метаданных

Исследователи из Стэнфордского университета продемонстрировали, что из метаданных телефонных звонков легко извлечь важную персональную информацию, и рекомендуют затруднить их получение и анализ. Метаданные телефонного звонка — это дата, время и продолжительность, а также номера его участников.

Считается, что подобная информация не заслуживает такой же серьёзной защиты, как само содержание разговора. В США правоохранительным органам и спецслужбам куда проще получить доступ к метаданным подозреваемого, чем разрешение на прослушивание телефона.

Исследователи из Стэнфорда решили проверить, в самом ли деле метаданные столь безобидны. Для этого они разработали мобильное приложение, которое извлекает и отправляет им хранящиеся в телефоне метаданные. Его установили более 800 добровольцев. В результате в распоряжении учёных оказались сведения о 250 тысячах телефонных звонков и 1,2 миллионах текстовых сообщений, сообщает xakep.ru.

Оказалось, что сопоставляя телефонные номера с общедоступными справочниками, можно немало узнать об участниках эксперимента. Например, в метаданных одного из подопытных обнаружились звонки на номера врача-кардиолога, местной аптеки и службу поддержки устройства для мониторинга сердечной аритмии. Не нужно быть великим сыщиком, чтобы догадаться, что у этого человека больное сердце, и он страдает аритмией. Это медицинская информация, которая не только считается персональной с юридической точки зрения, но и подлежит особенно строгой защите по американским законам.

Другой участник эксперимента несколько раз звонил в магазин огнестрельного оружия, рекламирующий самозарядные винтовки, и обращался в службу поддержки крупного производителя именно таких винтовок. Скорее всего, он делал это не просто так, а потому, что у него есть самозарядная винтовка. Это тоже пример персональной информации.

Исследователи также обращают внимание, что метаданные одного подозреваемого тянут за собой метаданные неожиданно большого количества людей и организаций. Спецслужбы нередко запрашивают разрешение на изучение метаданных не только подозреваемого, но и абонентов на расстоянии двух «прыжков» от него. Иными словами, всех, кто общался с подозреваемым, и всех, кто общался с теми, кто общался с подозреваемым. На первый взгляд, подобные требования резонны, но эксперимент показывает, что таким образом за одним подозреваемым потянутся метаданные примерно 25 тысяч абонентов. Большинство из них заведомо непричастны к расследуемому преступлению.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Через вредоносные Blender-файлы распространяют инфостилер StealC V2

Исследователи обнаружили новую кампанию «с российским следом», в рамках которой злоумышленники распространяют инфостилер StealC V2 через вредоносные файлы Blender, загруженные на крупные 3D-маркетплейсы вроде CGTrader. Blender позволяет выполнять Python-скрипты — они используются для автоматизации, кастомных панелей, ригов и аддонов.

Если у пользователя включена функция Auto Run, скрипты запускаются автоматически при открытии файла. Этим и пользуются атакующие: многие художники и моделлеры включают Auto Run ради удобства.

Специалисты Morphisec заметили, что вредоносные .blend-файлы содержат встроенный Python-код, который загружает лоадер с домена в Cloudflare Workers.

 

Далее загрузчик скачивает PowerShell-скрипт, который подтягивает два ZIP-архива — ZalypaGyliveraV1 и BLENDERX — с IP-адресов, контролируемых злоумышленниками.

Архивы распаковываются во временную папку, откуда создают LNK-файлы в автозагрузке для постоянства. Затем жертве подсовываются два компонента: основной инфостилер StealC и вспомогательный Python-стилер для подстраховки.

 

По данным Morphisec, атакующие используют последнюю версия второго поколения StealC — того самого, который ранее изучала Zscaler. Новый StealC заметно расширил функции:

  • крадёт данные из 23+ браузеров и поддерживает расшифровку паролей на стороне сервера, включая Chrome 132+;
  • поддерживает свыше 100 расширений криптокошельков и более 15 отдельных приложений;
  • ворует данные мессенджеров (Telegram, Discord, Tox, Pidgin), VPN-клиентов (ProtonVPN, OpenVPN) и почтовых программ, включая Thunderbird;
  • оснащён обновлённым механизмом обхода UAC.

При этом свежие версии StealC по-прежнему почти не детектируются антивирусами: Morphisec отмечает, что образец, который они изучали, не был распознан ни одним движком на VirusTotal.

Атака опасна тем, что 3D-маркетплейсы не могут проверять встроенный в файлы код. Художникам, аниматорам и моделлерам рекомендуется:

  • отключить автоматический запуск Python-скриптов: Blender → Edit → Preferences → снять галочку с Auto Run Python Scripts;
  • относиться к 3D-ассетам как к потенциально исполняемому коду;
  • скачивать файлы только у надёжных авторов или тестировать их в песочнице.

Злоумышленники явно ориентируются на профессиональное сообщество 3D-контента — и такая схема может оказаться особенно опасной для студий и фрилансеров, которые работают с большим количеством моделей из внешних источников.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru