Исследователи из Стэнфорда определили опасность телефонных метаданных

Исследователи из Стэнфорда определили опасность телефонных метаданных

Исследователи из Стэнфорда определили опасность телефонных метаданных

Исследователи из Стэнфордского университета продемонстрировали, что из метаданных телефонных звонков легко извлечь важную персональную информацию, и рекомендуют затруднить их получение и анализ. Метаданные телефонного звонка — это дата, время и продолжительность, а также номера его участников.

Считается, что подобная информация не заслуживает такой же серьёзной защиты, как само содержание разговора. В США правоохранительным органам и спецслужбам куда проще получить доступ к метаданным подозреваемого, чем разрешение на прослушивание телефона.

Исследователи из Стэнфорда решили проверить, в самом ли деле метаданные столь безобидны. Для этого они разработали мобильное приложение, которое извлекает и отправляет им хранящиеся в телефоне метаданные. Его установили более 800 добровольцев. В результате в распоряжении учёных оказались сведения о 250 тысячах телефонных звонков и 1,2 миллионах текстовых сообщений, сообщает xakep.ru.

Оказалось, что сопоставляя телефонные номера с общедоступными справочниками, можно немало узнать об участниках эксперимента. Например, в метаданных одного из подопытных обнаружились звонки на номера врача-кардиолога, местной аптеки и службу поддержки устройства для мониторинга сердечной аритмии. Не нужно быть великим сыщиком, чтобы догадаться, что у этого человека больное сердце, и он страдает аритмией. Это медицинская информация, которая не только считается персональной с юридической точки зрения, но и подлежит особенно строгой защите по американским законам.

Другой участник эксперимента несколько раз звонил в магазин огнестрельного оружия, рекламирующий самозарядные винтовки, и обращался в службу поддержки крупного производителя именно таких винтовок. Скорее всего, он делал это не просто так, а потому, что у него есть самозарядная винтовка. Это тоже пример персональной информации.

Исследователи также обращают внимание, что метаданные одного подозреваемого тянут за собой метаданные неожиданно большого количества людей и организаций. Спецслужбы нередко запрашивают разрешение на изучение метаданных не только подозреваемого, но и абонентов на расстоянии двух «прыжков» от него. Иными словами, всех, кто общался с подозреваемым, и всех, кто общался с теми, кто общался с подозреваемым. На первый взгляд, подобные требования резонны, но эксперимент показывает, что таким образом за одним подозреваемым потянутся метаданные примерно 25 тысяч абонентов. Большинство из них заведомо непричастны к расследуемому преступлению.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru