Рекламная ботсеть похищала по 6 млн долларов ежемесячно

Рекламная ботсеть похищала по 6 млн долларов ежемесячно

Независимая ИТ-компания Spider.io сегодня опубликовала отчет, согласно которому ей удалось обнаружить ботнет, который крадет более 6 млн долларов в месяц за счет фиктивных показов рекламы и поддельных переходов по рекламным объявлениям. Новая ботсеть, получившая название Chameleon, состоит из более чем 120 000 Windows-компьютеров в США, которые симулируют поведение реальных интернет-пользователей, совершая переходы по рекламным объявлениям и генерируя миллионы долларов рекламной выручки, так как с точки зрения рекламных систем они выглядят как обычные люди.

В Spider.io говорят, что мошенничество с кликами стоит рекламодателям довольно больших денег: в среднем рекламодатели платят по 69 центов за 1000 рекламных показов в сети. Chameleion открутила как минимум 14 млрд рекламных показов, обслуживавших 202 сайта на территории США, передает cybersecurity.ru.

Исследователи говорят, что все бот-браузеры выдавали себя за Internet Explorer 7 под управлением Windows 7. Работала бот-сеть через программную разработку Trident, способную работать с JavaScript. "Каждый бот использовал целый арсенал средств, чтобы заставить рекламные системы полагать, что они работают с настоящими пользователями", - говорят в Spider.io. Также в компании говорят, что пользователи зараженных ПК сталкивались с частыми зависаниями и перезагрузками компьютеров.

На момент блокировки бот-сети, под ее контролем было не менее 50 000 статических IP-адресов, помогавших создавать легитимность рекламных переходов.

Первые следы рекламной бот-сети были обнаружены еще в декабре 2012 года, а в феврале активность Chameleon значительно выросла.

AppSec.Track научился проверять код, написанный ИИ

AppSec.Track добавил поддержку работы с ИИ и стал первым российским SCA-анализатором, который умеет проверять код прямо в связке с ИИ-ассистентами. Обновление рассчитано в том числе на так называемых «вайб-кодеров» — разработчиков, которые активно используют LLM и ИИ-редакторы для генерации кода.

Новый функционал решает вполне практичную проблему: ИИ всё чаще пишет код сам, но далеко не всегда делает это безопасно.

Модель может «галлюцинировать», предлагать несуществующие пакеты, устаревшие версии библиотек или компоненты с известными уязвимостями. AppSec.Track теперь умеет отлавливать такие ситуации автоматически.

Разработчик может прямо в диалоге с ИИ-ассистентом запросить проверку сгенерированного кода через AppSec.Track. Система проанализирует используемые сторонние компоненты, подсветит потенциальные угрозы и предложит варианты исправления. В основе механизма — протокол MCP (Model Context Protocol), который позволяет безопасно подключать инструменты анализа к LLM.

Как поясняет директор по продукту AppSec.Track Константин Крючков, разработчики всё чаще пишут код «по-новому», а значит, и инструменты анализа должны меняться. Редакторы вроде Cursor или Windsurf уже умеют многое, но им всё равно нужна качественная и актуальная база уязвимостей. Именно её и даёт AppSec.Track, включая учёт внутренних требований безопасности конкретной компании. В итоге даже разработчик без глубокой экспертизы в ИБ может получить более надёжный результат.

Проблема особенно заметна на фоне роста low-coding и vibe-coding подходов. Код создаётся быстрее, а иногда — почти без участия человека, но с точки зрения безопасности в нём могут скрываться неприятные сюрпризы: SQL-инъекции, логические ошибки или небезопасные зависимости. Как отмечает старший управляющий директор AppSec Solutions Антон Башарин, ИИ-ассистенты не заменяют классические практики DevSecOps — особенно когда речь идёт об open source, где информация об угрозах обновляется быстрее, чем обучаются модели.

Новый функционал AppSec.Track ориентирован на профессиональные команды разработки, которые уже внедряют ИИ в свои процессы. Он позволяет сохранить требования Secure by Design и снизить риски даже в условиях активного использования генеративного кода.

RSS: Новости на портале Anti-Malware.ru