ИИ может склонировать JS-зловреда 10 тыс. раз и добиться FUD в 88% случаев

ИИ может склонировать JS-зловреда 10 тыс. раз и добиться FUD в 88% случаев

ИИ может склонировать JS-зловреда 10 тыс. раз и добиться FUD в 88% случаев

Проведенное в Palo Alto Networks исследование показало, что ИИ-модель можно заставить многократно обфусцировать вредоносный код JavaScript и в итоге получить семпл, не детектируемый антивирусами (FUD, fully undetectable).

Речь идет об онлайн-помощниках, авторы которых вводят ограничения во избежание злоупотреблений ИИ-технологиями — в отличие от создателей «злых» аналогов (WormGPT, FraudGPT и т. п.), заточенных под нужды киберкриминала.

Разработанный в Palo Alto алгоритм использует большую языковую модель (БЯМ, LLM) для пошаговой трансформации кода с сохранением его функциональности. При его тестировании на реальных образцах JavaScript-зловредов кастомный классификатор на основе модели глубокого обучения выдал вердикт «безвредный» в 88% случаев.

Опытным путем было установлено, что уровень детектирования снижается по мере увеличения количества итераций (в ходе экспериментов LLM создавала по 10 тыс. вариантов вредоноса). Примечательно, что привносимые изменения выглядели более естественно в сравнении с результатами готовых инструментов вроде obfuscator.io.

Для проведения исследования был также создан набор подсказок для выполнения различных преобразований, таких как переименование переменной, разделение строк, добавление мусора, удаление ненужных пробелов, альтернативная реализация функции.

Финальные варианты обфусцированных JavaScript были ради интереса загружены на VirusTotal. Их не смог распознать ни один антивирус; повторение проверок через четыре дня дало тот же эффект.

 

Результаты исследования помогли экспертам усовершенствовать свой инструмент детектирования JavaScript. Полученные с помощью LLM образцы были добавлены в тренировочный набор данных для модели машинного обучения; их использование позволило повысить результативность классификатора на 10%.

Точка Банк запустил ИИ-проверку сайтов и соцсетей бизнеса на скрытые схемы

Точка Банк представил на Уральском форуме «Кибербезопасность в финансах» собственный сервис ИИ-мониторинга для проверки сайтов и соцсетей бизнеса. Сервис встроен в процессы банка и автоматически анализирует онлайн-площадки клиентов перед подключением интернет-эквайринга. Проверка проводится не один раз — мониторинг продолжается и дальше на регулярной основе.

Главная особенность решения — оно оценивает не только сайты, но и страницы в соцсетях. Сейчас система уже умеет проверять магазины во «ВКонтакте», в перспективе планируется добавить мониторинг телеграм-каналов юридических лиц.

ИИ-мониторинг проверяет несколько вещей. Во-первых, наличие вредоносного кода — например, если на сайте размещён скрипт, который может перехватывать данные банковских карт или доступ к интернет-банку.

Во-вторых, анализируется содержание площадки: большие языковые модели оценивают тексты и ищут признаки скрытой или запрещённой деятельности. В-третьих, система отслеживает продажу запрещённых товаров и услуг — например, если под видом одной продукции фактически рекламируется другая.

В банке подчёркивают, что результаты автоматической проверки не являются окончательными: все подозрительные случаи передаются специалисту для дополнительного анализа, и решение принимается уже с учётом полной картины.

По словам Андрея Румянцева, лидера направления машинного обучения в Точка Банке, сервис настроен именно под задачи проверки бизнес-площадок и обучен на большом массиве сайтов юридических лиц.

Технология, по его словам, должна помочь банку снижать риски работы с недобросовестными компаниями, а предпринимателям — вовремя замечать проблемы на своих онлайн-ресурсах.

Фактически речь идёт о ещё одном уровне проверки цифрового присутствия бизнеса — с упором не только на техническую безопасность, но и на содержание.

RSS: Новости на портале Anti-Malware.ru