Спрос на услуги по безопасности генеративного ИИ активно растет

Спрос на услуги по безопасности генеративного ИИ активно растет

Спрос на услуги по безопасности генеративного ИИ активно растет

По данным Swordfish Security, за услугами по безопасности больших языковых моделей (LLM Security) в 2024 году обращались 35% заказчиков. Спрос на такие услуги растет прямо пропорционально внедрению подобных инструментов в бизнес-практику.

В 2025 году такая практика будет только расширяться, поскольку генеративный интеллект, прежде всего, большие языковые модели, будут внедряться все более активно. В будущем году уровень проникновения генеративного ИИ составит не менее 40%, а к 2030 году может достигнуть и 90%.

Как отметил директор по развитию бизнеса ГК Swordfish Security Андрей Иванов, рост интереса к безопасности больших языковых моделей стал одной из главных тенденций 2024 года. Недооценка таких рисков чревата серьезными проблемами. Среди таких рисков Андрей Иванов инъекции вредоносного кода в промпт, уязвимости в цепочках поставок, выдача ошибочной информации за истину на этапе обучения модели и даже кража модели злоумышленниками.

«В бизнесе используют большие модели для распознавания текста, анализа данных, предиктивной аналитики, поиска, оценки ресурса механических узлов промышленных агрегатов и многого другого. Многие отрасли, та же ИТ, активно используют ИИ-помощников. Например, в DevSecOps мы обучили и применяем модель, которая может анализировать и приоритизировать большой объем уязвимостей кода, таким образом освобождая время для квалифицированных инженеров для других, более сложных и творческих задач, — комментирует Андрей Иванов. — Критичным может оказаться, например, некорректная работа виртуальных ассистентов, которые могут влиять на клиентские решения, аналитику, дающую ошибочную информацию в цепочке поставок. Существуют атаки, отравляющие данные или позволяющие получить конфиденциальную информацию, и так далее. К этому стоит относиться как к любой информационной системе, влияющей на бизнес-процесс и проводящей, в случае компрометации, к потерям репутации и убыткам».

Внедрение ИИ требует корректировки корпоративных политик ИБ. Важно делать акцент на безопасности, а разрабатывать модели необходимо в соответствие с практиками разработки безопасного ПО, анализируя исходный код и зависимости, ответственно относиться к контролю доступа к источникам данных и стараться использовать доверенные алгоритмы обучения, уверен Андрей Иванов. Также важно учитывать то, что многие большие языковые модели используют облачную архитектуру, а это создает угрозу утечки конфиденциальных данных.

Инструмент для отслеживания пользователей WhatsApp по номеру попал в Сеть

Исследователи бьют тревогу: в открытом доступе появился инструмент, который позволяет отслеживать активность пользователей WhatsApp (принадлежит признанной в России экстремистской организации и запрещённой корпорации Meta) и Signal, зная только номер телефона. Речь идёт не о взломе аккаунта или перехвате переписки — достаточно «пинговать» устройство и анализировать время отклика мессенджера.

Метод основан на особенностях работы протоколов доставки сообщений. WhatsApp и Signal автоматически отправляют служебные подтверждения получения данных (delivery receipts).

Эти ответы уходят ещё до того, как приложение проверит, существует ли сообщение или реакция на него. В итоге атакующий может измерять round-trip time (RTT) — время между отправкой запроса и получением ответа — и по этим значениям делать весьма точные выводы о состоянии устройства.

Уязвимость получила название Silent Whisper. Её подробно описали учёные из Венского университета и исследовательского центра SBA Research ещё в прошлом году.

Однако теперь история вышла за пределы научных публикаций: исследователь под псевдонимом gommzystudio выложил на GitHub PoC-инструмент, наглядно показывающий, насколько просто всё это работает на практике.

По словам автора, можно отправлять до 20 «пингов» в секунду, не вызывая у жертвы ни уведомлений, ни всплывающих окон, ни каких-либо видимых следов в интерфейсе приложения. При этом устройство активно отвечает на запросы, а показатели RTT меняются в зависимости от ситуации.

Картина получается довольно показательная. Низкое время отклика обычно означает, что телефон в руках пользователя, экран включён и подключение идёт по Wi-Fi. Чуть более высокий RTT — активное использование через мобильную сеть. Большие задержки говорят о режиме ожидания с выключенным экраном, а тайм-ауты — о том, что устройство офлайн или в авиарежиме. Если значения постоянно «прыгают», можно предположить, что человек в движении.

 

Со временем такие замеры позволяют восстановить повседневный распорядок: когда человек приходит домой, когда ложится спать, когда выходит из дома и пользуется мобильной связью. И это уже не просто статус «онлайн» или «офлайн», а полноценное профилирование поведения.

Отдельная проблема — нагрузка на устройство. Частые запросы быстро разряжают аккумулятор и расходуют мобильный трафик. В экспериментах исследователей iPhone и Android-смартфоны теряли от 14 до 18% заряда батареи в час. Signal в этой ситуации выглядит чуть лучше: из-за встроенного ограничения частоты ответов потери составили около 1% в час. У WhatsApp такой защиты, к сожалению, нет.

Кроме того, анализ RTT позволяет грубо определять географическое положение пользователя (например, страна или регион), тип устройства и даже операционную систему. При использовании нескольких точек зондирования точность таких выводов может заметно вырасти.

Сам разработчик инструмента подчёркивает, что проект создан исключительно в исследовательских и образовательных целях, и напоминает о возможных нарушениях законодательства при слежке за людьми без их согласия. Тем не менее репозиторий уже собрал сотни звёзд и десятки форков, а значит, доступ к инструменту есть у кого угодно.

Что можно сделать обычному пользователю? Минимум — включить в WhatsApp настройку «Блокировать сообщения от неизвестных аккаунтов» (Настройки → Конфиденциальность → Расширенные).

Это может снизить интенсивность подобных атак, хотя полностью проблему не решает. Отключение отчётов о прочтении и индикаторов активности тоже полезно, но от Silent Whisper не спасает на сто процентов.

По состоянию на декабрь 2025 года уязвимость остаётся актуальной как для WhatsApp, так и для Signal. Эксперты советуют по возможности ограничивать статусную информацию в мессенджерах и следить за обновлениями — теперь мяч явно на стороне разработчиков сервисов.

RSS: Новости на портале Anti-Malware.ru