AMD CPU, выпущенные с 2011 по 2019 год, уязвимы перед двумя атаками

AMD CPU, выпущенные с 2011 по 2019 год, уязвимы перед двумя атаками

AMD CPU, выпущенные с 2011 по 2019 год, уязвимы перед двумя атаками

Две новые уязвимости угрожают пользователям процессоров AMD, выпущенных в период с 2011 по 2019 год. Проблема кроется в ненадёжной защите информации, обрабатываемой внутри CPU, — злоумышленник может выкрасть конфиденциальные данные или отключить защитные функции.

Команда исследователей, обнаружившая уязвимости, уведомила AMD ещё в августе прошлого года, однако компания пока не устранила проблемы.

Обе бреши используют функцию процессоров AMD, известную под названием L1D. Разработчики представили L1D в 2011 году с микроархитектурой Bulldozer, её основная задача — снизить энергопотребление за счёт обработки кешированных данных внутри памяти.

Шесть специалистов из Грацского технического университета и Университета Ренн подробно изучили (PDF) принцип работы L1D, а также «прощупали» функцию на предмет утечки данных.

В результате экспертам удалось обнаружить две потенциальные атаки на процессоры AMD, получившие имена Collide+Probe и Load+Reload. По своей сути они напоминают классические Flush+Reload и Prime+Probe — приводят к учётке данных.

Если углубиться в суть уязвимостей, Collide+Probe и Load+Reload позволяют мониторить взаимодействие процессов с кешем AMD и маленькими порциями извлекать данные из приложений.

По словам исследователей, уязвимости несут реальную угрозу, поскольку злоумышленники могут использовать их в реальных кибератаках. Сами специалисты смогли добиться успешной эксплуатации дыр с помощью JavaScript.

Расширения Chrome могут слить секреты URL через атаку по стороннему каналу

Как оказалось, расширения Chrome можно использовать для слива кодов авторизации, сеансовых ID и других секретов из URL любой открытой вкладки. Никаких специальных разрешений для этого не понадобится, только доступ к declarativeNetRequest API.

Этот механизм, пришедший на смену webRequest API, позволяет расширениям сообщать браузеру, что следует изменить или заблокировать на загружаемой странице (заголовки, реклама, трекеры).

Правила обработки запросов при этом добавляются динамически, а фильтрация осуществляется по регулярным выражениям, соответствующим подмножествам знаков, которые могут присутствовать на определенных позициях в URL.

Исследователь Луан Эррера (Luan Herrera) обнаружил, что блокировку, диктуемую правилами, Chrome производит почти мгновенно, за 10-30 мс, а остальные запросы выполняются дольше (~50-100ms) — из-за сетевых подключений. Эту разницу во времени расширение может использовать для бинарного поиска с целью посимвольного слива URL.

// extensions/browser/api/web_request/extension_web_request_event_router.cc:1117-1127
case DNRRequestAction::Type::BLOCK:
  ClearPendingCallbacks(browser_context, *request);
  DCHECK_EQ(1u, actions.size());
  OnDNRActionMatched(browser_context, *request, action);
  return net::ERR_BLOCKED_BY_CLIENT;

Оракул для подобной тайминг-атаки строится с использованием chrome.tabs.reload для перезагрузки страницы и перехватчика chrome.tabs.onUpdated, помогающего отследить событие status === "complete". Замер времени между reload и завершением загрузки покажет, заблокирован запрос или успешно обработан.

Повторение проверок и бинарного поиска позволяет получить полный URL (с довеском после «?»), затратив на каждый знак строки несколько прогонов. Таким образом, можно незаметно для пользователя украсть включенные приложением в адрес секреты — токены OAuth и сброса пароля, API-ключи, ссылки на контент, закрытый для поисковых систем.

Проверка PoC проводилась на Windows 11 24H2 с использованием Chrome разных версий:

  • 144.0.7559.97 (Stable)
  • 145.0.7632.18 (Beta)
  • 146.0.7647.4 (Dev)
  • 146.0.7653.0 (Canary)

В Google подтвердили возможность подобной атаки по стороннему каналу, но заявили, что решить проблему нереально.

RSS: Новости на портале Anti-Malware.ru