Две киберпреступные группы не поделили криптовалюту жертв

Две киберпреступные группы не поделили криптовалюту жертв

Две киберпреступные группы не поделили криптовалюту жертв

Две киберпреступные группировки, деятельность которых связывают с массовыми кампаниями вредоносного криптомайнинга, объявили войну друг другу. Эти группы известны под именами Pacha Group и Rocke Group, теперь они стараются скомпрометировать максимально возможное число серверов.

Группа Pacha Group имеет китайские корни, впервые исследователи зафиксировали ее активность в сентябре 2018 года. Злоумышленники устанавливали вредоносный майнер, который детектируется как Linux.GreedyAntd.

Атаки Pacha Group начинаются с компрометации уязвимых серверов за счет брутфорса. В основном атакуются WordPress или PhpMyAdmin, также преступники задействуют известные уязвимости в похожих сервисах.

В качестве оппонентов Pacha Group выступает группировка Rocke Group. Эти два хакерских объединения пытаются всячески подорвать операции друг друга.

За деятельностью обеих киберпреступных групп пристально следили специалисты компании Intezer Labs.

«Детектирование новых образцов вредоносов, используемых группой Pacha Group, находится на низком уровне. Кроме того, заметно очевидное желание Pacha Group найти и уничтожить семплы, которые использует другая группа — Rocke Group», — говорится в отчете Intezer Labs.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru