Google поможет хакерам находить жертв

Google поможет хакерам находить жертв

...

Специалист по компьютерной безопасности Сэми Камкар придумал способ, который позволяет находить местоположение пользователя без его ведома. Идея атаки весьма проста. Каждое устройство, подключающееся к любой компьютерной сети имеет MAC-адрес, — уникальный идентификатор сетевого оборудования.

Есть MAC-адреса и у домашних/офисных роутеров, через которые все большее количество пользователей подключается к сети. Роутер сообщает свой MAC только подключенным непосредственно к нему (по кабелю или посредством WiFi) компьютерам. Однако взломщик сумел обойти это ограничение и при помощи встроенного в страницу скрипта, смог узнать MAC-адрес.

Сама по себе информация про MAC-адрес хоть и не предназначена для разглашения, но и не содержит секретов. Однако, используя сервис геолокации Google, г-н Камкар смог, зная MAC-адрес, установить физические координаты — при помощи базы, собранной автомобилями Google, которые просканировали WiFi-сети. Таким образом в два этапа помимо воли пользователя возможно узнать его местонахождение.

Напомним, что в 2005 году Камкар создал сетевого червя, который добавил миллион друзей в MySpace, используя недостатки интернет-браузеров. Тогда его осудили на три года условно.

Источник

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Google представил VaultGemma — LLM с дифференциальной приватностью

В семействе больших языковых моделей (БЯМ, LLM) с открытым кодом, разработанных в Google, прибавление. Новинка VaultGemma не запоминает конфиденциальные данные при обучении, что предотвращает их слив пользователям.

ИИ-модель, построенная на базе Gemma 2 и работающая по 1 млрд параметров, прошла предварительный тренинг с применением метода дифференциальной приватности (differential privacy) — он добавляет в процесс обучения эталонный шум для ограничения возможности запоминания.

К сожалению, такой подход снижает не только риск утечки конфиденциальных данных, но также точность и быстродействие LLM. Чтобы найти оптимальный баланс между приватностью, практичностью и затратами на вычисления, в Google провели специальное исследование.

Бенчмаркинг показал, что по производительности VaultGemma сравнима с моделями той же величины, но без гарантий конфиденциальности.

 

Подробная информация о новом opensource-проекте, способном ускорить создание приватных и безопасных ИИ-систем для медучреждений, финансовых институтов и госсектора, выложена на Hugging Face и Kaggle.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru