Пермские ученые разработали фильтр для «враждебного» контента

Пермские ученые разработали фильтр для «враждебного» контента

Ученые Пермского государственного национального исследовательского университета (ПГНИУ) разработали программу для фильтрации в интернете противоправного контента — экстремистских и оскорбительных высказываний, сообщает пресс-служба вуза.

В настоящее время в рунете, по данным проведенного учеными анализа веб-текстов разных стран, господствует речевой терроризм. Чило таких нарушений в российском интернете гораздо выше, чем на форумах Германии и Польши. Так, около 26% комментариев в публичном секторе рунета содержат экстремистские или оскорбительные высказывания.

Аспирантка кафедры речевой коммуникации ПГНИУ Евгения Мехонина и ассистент этой кафедры Лиана Ермакова предложили инструмент фильтрации противоправного контента — инновационную программу FILTEX, с помощью которой любой пользователь сможет избавиться от противоправного контента в социальных сетях и блогах. Программа была разработана под руководством доктора филологических наук Владимира Салимовского и кандидата технических наук Даниила Курушина, сообщает digit.ru.

«Главное отличие FILTEX от других программ — технология распознавания противоправного контента. Мы используем подход известного профессора ПГНИУ Маргариты Николаевны Кожиной — подход системности речи. Он состоит в том, что на всех уровнях языка (лексическом, морфологическом, синтаксическом и других) можно выделить черты, признаки враждебности. Их можно формализовать при помощи математических методов, то есть представить в виде, понятном для машины», — приводятся в сообщении слова Мехониной.

Разработчики полагают, что этой программой можно будет воспользоваться как приложением в социальных сетях, а организации получат доступ к программе через веб-сервис. Потенциальные пользователи FILTEX — блогеры и политики, СМИ и другие организации, желающие очистить свои сайты от противоправных комментариев.

«В настоящее время у нас создан исследовательский прототип, пока нет интерфейса. Программа пока лишь помечает в тексте нужные части (противоправные высказывания). Планируется, что в будущем, по нашей задумке, программа будет, скорее всего, удалять такие предложения. Но мы будет учитывать и мнение пользователей, хотим, чтобы ее функции зависели от самой страницы, на которой она используется. То есть, чтобы были варианты: либо программа будет совсем удалять негативный текст, либо, к примеру, вообще не даст вводить его», — сказала РИА Новости Мехонина.

По ее словам, коллеги из пермского университета и других вузов страны работают в этом направлении, и уже есть подобные решения. Но никто ранее не использовал подход системности речи, а он наиболее полный. Уже весной лингвисты намерены подготовить первую пользовательскую версию разработки.

«Примерно к весне, к марту-апрелю, мы рассчитываем создать первую версию интерфейса программы, а к лету выйдем на контакт с провайдерами для продвижения разработки», — заключила Мехонина.

В настоящее время Евгения Мехонина и Лиана Ермакова уже получили свидетельства о регистрации интеллектуальной собственности на свою программу. 

 

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

Мультиагентная система взяла на себя треть задач SOC в Yandex Cloud

Yandex Cloud сообщила, что автоматизировала значительную часть рутинных задач в своём центре мониторинга безопасности (SOC), внедрив мультиагентную систему на базе ИИ. По данным компании, около 39% операций, которые раньше занимали существенную долю рабочего времени аналитиков, теперь выполняют ИИ-помощники. Речь идёт о разборе алертов, первичном анализе инцидентов и поиске данных во внутренних базах.

Внутри SOC несколько ИИ-агентов работают параллельно: один сортирует входящие уведомления, другой перепроверяет данные и выявляет ошибки.

Такой подход позволяет снизить риск некорректных выводов и ускорить фильтрацию ложных срабатываний. По оценкам компании, время на обработку некорректных оповещений сократилось на 86%.

За два года Yandex Cloud прошла путь от экспериментов с ИИ в SOC до полноценной промышленной эксплуатации. Значимую роль сыграли RAG-технологии, которые позволяют моделям работать с актуальными документами и накопленной базой инцидентов. Мультиагентный подход, в свою очередь, сделал возможным разделить задачи между специализированными помощниками, способными учитывать контекст крупных корпоративных инфраструктур.

По словам Евгения Сидорова, директора по информационной безопасности Yandex Cloud, система помогает ускорять обнаружение угроз и автоматизировать обработку данных киберразведки. Он отмечает, что современные SOC-команды всё чаще работают на стыке ИБ и инструментов ИИ.

Мультиагентная система используется не только внутри компании, но и доступна клиентам облачной платформы — в частности, в сервисах Detection and Response и Security Deck. Их уже применяют организации из разных отраслей, включая финтех, здравоохранение и страхование, для автоматизации части процессов мониторинга.

ИИ-помощник, встроенный в сервисы, может разбирать инциденты пошагово, анализировать индикаторы компрометации и артефакты в контексте облачной инфраструктуры, а также предлагать варианты реагирования. Он также собирает дополнительные данные, например по IP-адресам, и формирует рекомендации по предотвращению дальнейших угроз.

AM LiveКак эффективно защититься от шифровальщиков? Расскажем на AM Live - переходите по ссылке, чтобы узнать подробности

RSS: Новости на портале Anti-Malware.ru