Российский госсектор находится под давлением APT-группировок

Российский госсектор находится под давлением APT-группировок

Российский госсектор находится под давлением APT-группировок

По данным Центра компетенций по сетевой безопасности компании «Гарда», в 2025 году российские государственные структуры и промышленные предприятия находились под серьёзным давлением со стороны APT-группировок. Основными целями атак оставались кибершпионаж и нанесение существенного ущерба работе ИТ-инфраструктуры.

В «Гарда» также отмечают смену тактики злоумышленников: на смену демонстративным акциям, рассчитанным на медийный эффект, пришла скрытная и методичная работа, ориентированная на долгосрочное присутствие в инфраструктуре жертвы.

Ключевой конечной целью большинства атак остаётся сбор данных. В отдельных случаях злоумышленники уничтожали информацию после получения доступа к ней, однако нередко фиксировались и попытки максимально долго сохранить скрытое присутствие в атакованной инфраструктуре.

Всего, по оценке «Гарда», в число наиболее активных группировок, атакующих российские организации, вошли восемь APT-групп. Семь из них связывают с Украиной, ещё одна имеет азиатское происхождение — предположительно, основная часть её участников находится в Казахстане. Все эти группировки активно атакуют государственные учреждения. Следом по частоте атак идут промышленность и энергетика, телекоммуникационный сектор и образование.

Для первичного проникновения в ИТ-инфраструктуру компаний и госорганов злоумышленники, как правило, используют фишинг. Применяются две основные тактики: целевые рассылки и использование легитимных инструментов — в том числе документов — либо замаскированных под них зловредов. При этом содержание писем всегда адаптируется под профиль конкретной организации.

Получив начальный доступ, атакующие закрепляются в системе, опираясь на общедоступные средства администрирования, инструменты туннелирования и фреймворки постэксплуатации. Широко применяются PowerShell-скрипты, задания планировщика, ключи автозапуска в реестре, а также установка легитимных агентов удалённого управления, не содержащих явных признаков вредоносного кода. Такая тактика позволяет сохранять доступ после перезагрузки и не привлекать внимание средств защиты.

Для «бокового» перемещения внутри сети хакеры используют инструменты анализа Active Directory и сетевого сканирования. Перемещение между узлами осуществляется с помощью штатных протоколов Windows, а также с использованием украденных или приобретённых на теневом рынке учётных данных.

Управляя скомпрометированной инфраструктурой, злоумышленники активно маскируют сетевой трафик, используя HTTPS, WebSocket и туннелирование через сервисы — аналоги ngrok. В отдельных случаях задействуются публичные облачные платформы. Это усложняет сетевой анализ и позволяет скрывать реальные серверы управления. В ряде атак также зафиксирован переход на новые открытые C2-фреймворки, доработанные под собственные задачи, включая AdaptixC2 и другие решения.

«Результаты исследования показывают, что атакующие всё чаще маскируют вредоносную активность под штатные процессы и легитимное администрирование. Поэтому критически важно не только контролировать действия в инфраструктуре, но и обогащать средства защиты потоками данных об угрозах — TI-фидами. Они позволяют учитывать тактики, техники и инструменты конкретных группировок, быстрее выявлять подозрительные цепочки событий и сокращать время реагирования на инциденты», — отметил Илья Селезнёв, руководитель продукта «Гарда Threat Intelligence Feeds».

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru