Эксперты уговорили DeepSeek создать кейлоггер и шифровальщика

Эксперты уговорили DeepSeek создать кейлоггер и шифровальщика

Эксперты уговорили DeepSeek создать кейлоггер и шифровальщика

Исследователи из Tenable убедились в том, что защиту DeepSeek R1 от злоупотреблений можно обойти и заставить ИИ-помощника сгенерировать, а потом улучшить вредоносный код,— нужно лишь найти нужные слова и следить за его «ходом мысли».

Для обхода ограничений DeepSeek экспериментаторы использовали джейлбрейк, перефразируя запросы, которые чат-бот отказывался выполнять. Улучшить результаты помогла способность ИИ-модели имитировать человеческое мышление — строить рассуждения на основе цепочек логических выводов (Chain-of-Thought).

Испытания проводились по двум сценариям. Вначале DeepSeek обманом заставили создать кейлоггер; выстроив план выполнения задачи, собеседник в итоге выдал код на C++ для отслеживания нажатия клавиш с записью в локальный файл.

Образец работал некорректно из-за допущенных ошибок, которые ИИ-ассистент сам не смог исправить. Поскольку он поэтапно отчитывался о ходе выполнения задачи, эксперты сумели внести корректуру, а заодно попросили написать дополнительные коды для инъекции DLL и шифрования лог-файла.

Таким же образом с помощью DeepSeek были созданы несколько семплов шифровальщика, однако они не компилировались, и правки пришлось вносить вручную. После ряда усовершенствований под руководством экспертов ИИ выдал рабочий код, умеющий перечислять файлы, шифровать данные, закрепляться в системе и выводить диалоговое окно с сообщением для жертвы.

По результатам испытаний был сделан ожидаемый вывод: умножение числа ИИ-сервисов снизило планку для неумелых вирусописателей. Вредоносные коды, которые можно создать с помощью DeepSeek, несовершенны и примитивны, но их можно доработать, используя его коллекцию техник и поисковых ключей.

Злоумышленники все чаще применяют ИИ для создания зловредов и планирования атак. Они также создают свои ИИ-модели, лишенные всяких ограничений.

KUMA 4.2 получила ИИ для выявления компрометации учётных данных

«Лаборатория Касперского» выпустила обновление своей SIEM-платформы Kaspersky Unified Monitoring and Analysis Platform (KUMA) — версия 4.2 получила сразу несколько заметных доработок. Главная из них — использование машинного обучения для выявления признаков компрометации учётных записей.

Новая ИИ-функциональность анализирует поведение пользователей и ищет аномалии, сравнивая текущую активность с привычным историческим профилем.

Если система замечает подозрительные отклонения, специалисты по ИБ получают уведомление о возможной краже или компрометации учётных данных. Такой подход позволяет реагировать на инциденты на более раннем этапе, ещё до того, как атака разовьётся.

В обновлении также появилась более гибкая ролевая модель. Теперь в KUMA можно создавать, дублировать и настраивать роли под конкретные бизнес-процессы и организационную структуру компании. Это упрощает управление доступами и помогает точнее распределять права между командами.

Отдельного внимания заслуживает коррелятор 2.0, который пока доступен в бета-версии. Он стал отказоустойчивым, масштабируемым по горизонтали и, по заявлению разработчиков, обеспечивает прирост производительности примерно в пять раз при одновременном снижении требований к инфраструктуре.

Ещё одно практичное нововведение — резервное копирование данных о событиях. В версии 4.2 можно выгружать информацию в защищённые, неизменяемые архивы. Это упрощает расследование инцидентов, проведение аудитов и выполнение регуляторных требований.

Наконец, в KUMA появилась возможность запускать длительные поисковые запросы в фоновом режиме. Это особенно удобно при разборе сложных инцидентов, когда нужно анализировать события за большой период времени, не останавливая текущую работу в системе.

По словам руководителя направления развития единой корпоративной платформы «Лаборатории Касперского» Ильи Маркелова, спрос на SIEM-системы продолжает расти, особенно среди компаний, которые выстраивают собственные SOC. В компании подчёркивают, что развитие KUMA идёт в сторону автоматизации и снижения нагрузки на специалистов, чтобы они могли сосредоточиться на анализе сложных атак и профилактике инцидентов, а не на рутинных операциях.

RSS: Новости на портале Anti-Malware.ru