Новая ИИ-модель копирует собеседника путем проведения опроса

Новая ИИ-модель копирует собеседника путем проведения опроса

Новая ИИ-модель копирует собеседника путем проведения опроса

Исследователи из трех американских университетов и команды Google DeepMind создали модель генеративного ИИ, способную после двухчасового аудиоинтервью сымитировать личность и поведение собеседника с точностью до 85%.

В контрольную выборку вошли 1052 добровольца разного возраста, пола, образования, достатка, национальности, вероисповедания и политических взглядов. Для всех были созданы индивидуальные программы-агенты одинаковой архитектуры.

Разработанный сценарий бесед включал обычные для социологических исследований вопросы, тесты «Большая пятерка» для построения модели личности, пять экономических игр («Диктатор», «Общественное благо» и проч.) и поведенческую анкету, составленную в ходе недавних экспериментов с большими языковыми моделями (БЯМ, LLM).

Ответы испытуемых сохранялись в памяти для использования в качестве контекста. Спустя две недели добровольцам предложили пройти тот же опрос, и LLM смогла предугадать их реплики с точностью до 85%.

 

По мнению авторов исследования, их метод создания цифровых двойников — хорошее подспорье в изучении индивидуального и коллективного поведения. Полученные результаты также можно использовать в социологии и для выработки политических решений.

К сожалению, совершенствование ИИ-технологий — палка о двух концах. Попав в руки злоумышленников, подобный инструмент позволит создавать еще более убедительные дипфейки, чтобы вводить в заблуждение интернет-пользователей с корыстной либо иной неблаговидной целью.

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

70% opensource-проектов редко фиксятся или заброшены

Согласно результатам исследования, проведенного в ИБ-компании Lineaje, 95% уязвимостей в приложениях возникают по вине подключаемых компонентов с открытым кодом. В половине случаев ситуацию невозможно исправить из-за отсутствия патча.

Более того, 70% opensource-проектов, на которые полагается рабочий софт, уже не поддерживаются либо находятся в неудовлетворительном состоянии. Статистика получена на основе анализа более 7 млн пакетов с открытым исходным кодом.

Примечательно, что проекты, за состоянием которых хорошо следят, оказались в 1,8 раза более уязвимыми, чем заброшенные, — видимо, частые изменения повышают риск привнесения ошибок.

Подобная опасность также выше, когда над проектом работают менее 10 или более 50 человек. В первом случае риск просмотреть проблему безопасности на 330% превышает показатель для команды средней величины, во втором — на 40%.

Проблему усугубляет тот факт, что зависимость может содержать до 60 слоев разнородных компонентов с открытым кодом, объединенных в одну структуру — как лего. В этом случае сложно не только оценить риски, но и принять меры для смягчения последствий эксплойта.

Исследование также показало, что 15% opensource-компонентов в приложениях с зависимостями имеют множество версий, что тоже затрудняет латание дыр. Софт средней величины в ходе работы может подтягивать 1,4 млн строк кода, написанного на 139 языках, в том числе небезопасных по памяти.

Треть подключаемых пакетов (34%) имеют американское происхождение, 13% — российское. В 20% случаев разработчик из США — аноним; для России этот показатель вдвое ниже.

Anti-Malware Яндекс ДзенПодписывайтесь на канал "Anti-Malware" в Telegram, чтобы первыми узнавать о новостях и наших эксклюзивных материалах по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru