Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

Deceptive Delight: джейлбрейк ИИ-моделей, использующий их благосклонность

В Palo Alto Networks разработали новый метод обхода ограничений больших языковых моделей (БЯМ, LLM), на которых обычно строятся ИИ-боты. Тестирование на восьми популярных моделях показало результативность почти 65%.

Метод джейлбрейка ИИ-моделей, получивший имя Deceptive Delight, схож с другими атаками, которые полагаются на поэтапную инъекцию вредоносных подсказок-стимулов в ходе взаимодействия с LLM.

Однако в отличие от аналогов он позволяет получить искомый результат всего за два коммуникативных шага.

 

В ходе экспериментов был добавлен третий шаг: LLM попросили развить потенциально опасную тему. В итоге было получено качественное, подробное руководство по изготовлению «коктейля Молотова».

При разработке своего джейлбрейка эксперты сделали ставку на ограниченный объем внимания LLM — ее неспособность сохранять контекстную осведомленность при генерации ответов. Когда вводится сложный или длинный текст, в котором безобидный контент слит с вредоносным, модель может сконцентрироваться на первом и неправильно воспринять либо проигнорировать второй.

Для тестирования были выбраны 40 скользких тем, сгруппированных в шесть категорий: «ненависть», «харасмент», «самоистязание», «сексуального характера», «насилие» и «опасный».

Поскольку предметом исследования являлась проверка на прочность встроенной защиты, у восьми контрольных LLM отключили контент-фильтры, которые обычно отслеживают и блокируют стимулы и ответы с неприемлемым содержимым.

Тесты показали эффективность трехшаговой Deceptive Delight в среднем 64,6%. Самыми успешными оказались темы категории «насилие».

Роскомнадзор экономит ресурсы, замедляя Telegram

Мощностей технических средств противодействия угрозам (ТСПУ), которые Роскомнадзор использует для ограничения доступа к ресурсам, по мнению экспертов, оказалось недостаточно для одновременного воздействия на несколько крупных платформ. В результате ведомству приходится применять альтернативные технические методы.

Как считают эксперты, опрошенные РБК, именно этим может объясняться исчезновение домена YouTube из DNS-серверов Роскомнадзора, о котором накануне сообщил телеграм-канал «Эксплойт».

Управляющий директор инфраструктурного интегратора «Ультиматек» Джемали Авалишвили в комментарии РБК связал ситуацию с началом замедления Telegram:

«Фактически подконтрольные Роскомнадзору DNS-серверы перестали возвращать корректные адреса для домена youtube.com, что привело к невозможности подключения пользователей. Такой метод — часть технического арсенала Роскомнадзора для ограничения доступа к “неугодным” ресурсам. Он не нов и применяется в России наряду с блокировкой IP-адресов и пакетной фильтрацией».

Независимый эксперт телеком-рынка Алексей Учакин пояснил, что подобный подход может использоваться для экономии ресурсов, которых недостаточно для одновременного замедления двух крупных платформ:

«Поскольку все провайдеры обязаны использовать национальную систему доменных имен, то есть DNS-серверы под контролем Роскомнадзора, фактически появляется грубый, но достаточно надежный “выключатель” YouTube на территории России. При этом даже такая мера не перекрывает все способы обхода блокировок».

Замедление Telegram в России началось 10 февраля — об этом сначала сообщили СМИ со ссылкой на источники, а затем информацию официально подтвердил Роскомнадзор. Однако жалобы пользователей на снижение скорости работы мессенджера появились еще 9 февраля.

RSS: Новости на портале Anti-Malware.ru