Шпионы Shedding Zmiy проникли в десятки российских организаций

Шпионы Shedding Zmiy проникли в десятки российских организаций

Шпионы Shedding Zmiy проникли в десятки российских организаций

По данным ГК «Солар», нацеленная на шпионаж APT-группа с условным именем Shedding Zmiy объявилась в России в 2022 году. На ее счету уже несколько десятков атак на госструктуры, промпредприятия, телеком-сети и другие объекты критической важности.

Обнаружив в ходе анализа бэкдор CobInt, эксперты предположили, что автор целевых атак — группировка Cobalt (это ее «фирменный» инструмент). Однако расследование показало, что это не так: взломщики не искали финансовой выгоды, они воровали данные с тем, чтобы использовать их в дальнейших атаках или слить в Telegram.

Обширный набор инструментов и техник позволяет Shedding Zmiy каждый раз менять тактику. Кибершпионы также подняли множество C2-серверов на территории России, воспользовавшись услугами облачных и хостинг-провайдеров, что помогает им обходить блокировки по GeoIP.

В атаках применяются и выложенные в паблик зловреды, и спецразработки под конкретные цели (загрузчики, бэкдоры, веб-шеллы). Для хранения вредоносного кода иногда используются взломанные серверы.

В арсенале Shedding Zmiy исследователи суммарно насчитали 35 инструментов разного назначения и 20 используемых уязвимостей — в основном хорошо известных, таких как Log4Shell, ProxyShell и PrintNightmare .

Один эксплойт оказался редким и замысловатым. Соответствующую уязвимость в ASP.NET (десериализация ненадежных данных в параметре VIEWSTATE) разработчики Microsoft пытались устранить еще десять лет назад, но затем оставили эту затею — в «Солар» полагают, из-за сложности использования лазейки.

«В процессе расследований мы нашли как знакомые по деятельности группы Cobalt вредоносные инструменты, так и не встречавшиеся ранее уникальные образцы ВПО, в частности, бэкдор Bulldog и загрузчик XDHijack, — отметил эксперт из команды Solar 4RAYS Антон Каргин. — Кроме того, группировка разработала целый фреймворк для эксплуатации уязвимости десериализации VIEWSTATE. Всё это говорит о высоком профессионализме злоумышленников и немалых ресурсах».

Участники Shedding Zmiy также активно используют элементы социальной инженерии. Так, в ходе одной из атак они создали в Telegram поддельный аккаунт ИБ-специалиста целевой компании и от его имени выманили у сотрудника учетные данные для доступа к внутренних хостам.

В другом случае злоумышленники сыграли на доверии между компаниями-партнерами (атака типа Trusted Relationship): взломав сеть телеком-провайдера, разослали от его имени десятки вредоносных писем в другие организации.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Российские ученые предложили новую архитектуру памяти для ИИ

Российские учёные из МФТИ решили проблему, с которой сталкиваются современные нейросети: они склонны «забывать» ранее полученные данные в процессе обучения. Эта особенность долгое время мешала развитию автономного транспорта, робототехники и дронов. В МФТИ разработали новую модель памяти для искусственного интеллекта, способную устранить этот эффект.

Новая архитектура основана на тех же принципах, по которым работает человеческий мозг.

Ключевая идея — механизм перестройки нейронных связей, или ревайринг. Он работает совместно с обычными процессами обучения, помогая системе сохранять ранее усвоенную информацию и одновременно запоминать новую. Это достигается за счёт постепенного превращения кратковременной памяти в долговременную.

В результате, если традиционная нейросеть «забывает» данные уже после тысячи циклов активности, то новая архитектура выдерживает более 170 миллионов. Пока разработка существует в виде компьютерной модели, однако уже ведутся работы по созданию её физического аналога.

«Возможно, мы нашли ответ на одну из главных загадок мозга: как он умудряется учиться новому, не стирая при этом старые «файлы». Всё дело в постоянной перестройке нейронных связей — ревайринге. Именно он превращает хрупкую кратковременную память в прочные долговременные воспоминания», — рассказал «Известиям» ведущий научный сотрудник лаборатории нейробиоморфных технологий МФТИ Сергей Лобов.

Как отметил ведущий эксперт в области ИИ «Университета 2035» Ярослав Селиверстов, преимущества новой архитектуры памяти особенно важны для автономных систем — роботов и беспилотного транспорта. По его словам, именно склонность нейросетей к «забыванию» ранее накопленных данных является главным барьером для их дальнейшего развития.

«В промышленной робототехнике такие системы позволят создавать универсальных роботов-манипуляторов, которые смогут осваивать новые операции с деталями, не забывая предыдущие навыки сборки. Для беспилотных автомобилей и дронов это означает возможность непрерывно адаптироваться к уникальным дорожным условиям и ландшафтам, накапливая собственный опыт без вмешательства инженеров. Перспективно также их применение в персонализированных медицинских диагностических системах, способных эволюционировать вместе с историей болезни пациента, и в умных домах, подстраивающихся под привычки жильцов», — отметил Ярослав Селиверстов.

Руководитель программ развития МГУ им. М.В. Ломоносова Ольга Валаева добавила, что технология может найти применение и в медицинских устройствах — прежде всего в нейроимплантах, компенсирующих влияние дегенеративных процессов в головном мозге, например при болезни Паркинсона.

Эксперт рынка TechNet НТИ, генеральный директор группы компаний ST IT Антон Аверьянов уточнил, что пока полученные результаты нельзя напрямую применить к самым сложным моделям, обрабатывающим сотни миллиардов или триллионы параметров. Однако, по его мнению, эта задача будет решена в обозримом будущем.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru