В Пензенском университете создали антивирус с ИИ

В Пензенском университете создали антивирус с ИИ

В Пензенском университете создали антивирус с ИИ

Созданный в Пензенском университете (ПГУ) антивирус использует нейросети и машинное обучение и не требует постоянного подключения к интернету. Разработку планируют завершить в этом году, а в ноябре подать заявку на сертификацию.

Из рассказа руководителя проекта, которого цитируют «Известия», можно понять, что вооруженный ИИ защитный софт способен предугадывать действия пользователя, и его можно подстроить под конкретные условия и задачи. Пока готова только версия для Windows, умеющая распознавать трояны, руткиты и нелегальные майнеры.

Для выявления фактов заражения используются два вида анализа:«нейросетевой» и «нейросигнатурный». В первом случае написанная на Python нейросеть оценивает работу кода, выполняя сравнение с известными ей алгоритмами поведения вредоносов.

Второй компонент определяет угрозы, используя ИИ в комбинации с традиционным сигнатурным анализом. Авторы проекта исходили из того, что написанный с нуля зловред — большая редкость, вирусописатели обычно в той или иной степени используют наработки коллег по цеху.

По замыслу, созданный в стенах ПГУ антивирус можно будет использовать как в корпоративном окружении, так и в индивидуальном порядке. Продукт планируют распространять по подписке.

Заметим, без связи с Сетью (не получая обновлений) такой софт сможет детектировать только вредоносные программы с заимствованиями, притом теми, с которыми он уже сталкивался. Впрочем, приведенное репортером описание слишком лаконично и туманно, стоит подождать более конкретных дополнений.

Внедрение ИИ-технологий — новомодный и прогрессивный тренд, в России ему следуют многие крупные компании, включая представителей сферы ИБ, а Минцифры считает курс на ИИ одним из своих приоритетов. Что касается антивирусной защиты, комментатор из UserGate отметил, что применение машинного обучения способно повысить эффективность детектирования до 96%.

Как бы то ни было, подобные инструменты нельзя оставлять без контроля: нейросети не всегда выдают достоверную информацию, результаты желательно проверять. Им можно доверить черновую работу для ускорения ИБ-процессов и повышения эффективности, а принятие решений оставить за оператором.

В Intel TDX обнаружены уязвимости с риском утечки данных

Intel вместе с Google провела масштабный аудит технологии Trust Domain Extensions (TDX), процессе которого обнаружилось немало проблем. За пять месяцев работы специалисты выявили пять уязвимостей, а также 35 багов и потенциальных слабых мест в коде.

TDX — это аппаратная технология «конфиденциальных вычислений». Она предназначена для защиты виртуальных машин в облаке даже в том случае, если гипервизор скомпрометирован или кто-то из администраторов действует недобросовестно.

По сути, TDX создаёт изолированные «доверенные домены» (Trust Domains), которые должны гарантировать конфиденциальность и целостность данных.

Проверкой занимались исследователи Google Cloud Security и команда Intel INT31. Они анализировали код TDX Module 1.5 — ключевого компонента, отвечающего за работу механизма на высоком уровне. В ход пошли ручной аудит, собственные инструменты и даже ИИ.

В результате обнаружены пять уязвимостей (CVE-2025-32007, CVE-2025-27940, CVE-2025-30513, CVE-2025-27572 и CVE-2025-32467). Их можно было использовать для повышения привилегий и раскрытия информации. Intel уже выпустила патчи и опубликовала официальное уведомление.

Самой серьёзной Google называет CVE-2025-30513. Она позволяла злоумышленнику фактически обойти механизмы безопасности TDX. Речь идёт о сценарии, при котором во время миграции виртуальной машины можно было изменить её атрибуты и перевести её в режим отладки.

Это открывало доступ к расшифрованному состоянию виртуальной машины, включая конфиденциальные данные. Причём атаку можно было провести уже после процедуры аттестации, когда в системе гарантированно присутствуют важные материалы.

Google опубликовала подробный технический отчёт (PDF) объёмом 85 страниц, а Intel — более краткое описание результатов совместной работы.

RSS: Новости на портале Anti-Malware.ru