Мошенники ускоряют профилирование мишеней с помощью ИИ

Мошенники ускоряют профилирование мишеней с помощью ИИ

Мошенники ускоряют профилирование мишеней с помощью ИИ

Авторы сложных сценариев отъема денег у юрлиц стали использовать ИИ, чтобы ускорить сбор данных о намеченных жертвах. В RTM Group зафиксировали сотни случаев хорошо подготовленных атак на малый и средний бизнес.

Сама мошенническая схема выглядит, как BEC-атака, только вместо имейл используются мессенджер (в данном случае Telegram) и телефонная связь. Применение ИИ, по оценке экспертов, позволило повысить эффективность обмана на 40%; при этом преступный доход ОПГ средней величины (10 участников) может ежедневно составлять от 1 млн до нескольких десятков млн рублей.

В ходе подготовки злоумышленники, вооружившись ИИ, собирают информацию из слитых в Сеть баз. Найдя совпадения по месту работы и совместным счетам, они разбивают мишени на пары: владелец – управляющий компании, гендиректор – его зам, директор – главбух и т. п.

Затем в Telegram создаются поддельные аккаунты лидеров каждой пары, и боты начинают слать сообщения от их имени, вовлекая подчиненных в диалог. В качестве темы обычно используются непорядочность знакомых / клиентов либо мифическая проверка со стороны правоохраны (к примеру, ФСБ).

Сообщения бота могут содержать фамилии реальных представителей госорганов, скриншоты специально составленных документов. После такой обработки следует звонок персоны, упоминавшейся в ходе беседы.

Лжеревизор начинает задавать вопросы о случаях мошенничества, долгах, неких платежах, пытаясь определить финансовую проблему, которую можно использовать как предлог для выманивания денег переводом на левый счет.

«Основной рекомендацией по минимизации рисков является постоянное внимание к деталям в ходе виртуального общения с партнерами по бизнесу и сотрудниками, особенно когда речь идет о проблемах с законом, переводах финансовых средств, проверках компетентных органов, — заявили эксперты «Известиям». — Также специалисты RTM Group рекомендуют не выкладывать в публичный доступ прямые контакты руководителей компаний и департаментов».

На днях мы анализировали «злые» аналоги ChatGPT: xxXGPT, WormGPT, WolfGPT, FraudGPT, DarkBERT, HackerGPT. Рассказали, в чём состоит опасность и как с нею бороться.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru