Российские ученые создали инструмент выявления дипфейк-видео

Российские ученые создали инструмент выявления дипфейк-видео

Российские ученые создали инструмент выявления дипфейк-видео

В Донском государственном техническом университете (ДГТУ, Ростов-на-Дону) создали программу для распознавания видеоконтента, сгенерированного с помощью ИИ. Софт весом 100 Кбайт работает на Windows 7 и выше и выявляет дипфейки с приемлемой точностью.

Программа написана на Python 3.11 в среде разработки IDE Microsoft Visual Studio на архитектуре Inception. Для распознавания лиц была применена модель BlazeFace нейронных сетей ResNeXt и XceptionsNet, которые обучили на Google Cloud Platform.

Инструмент прост в использовании: достаточно скачать подозрительное видео и запустить проверку через командную строку. Программа найдет все кадры с лицами и проанализирует каждый на наличие признаков подделки. Так, дипфейк могут выдать натяжение губ при разговоре, расхождение речи и мимики, а также различные технические нюансы, вплоть до неестественно расположенных пикселей.

Извлеченные из оригинала характеристики обрабатываются генеративно-состязательной сетью (Generative Adversarial Network, GAN). Для вывода предусмотрены три варианта:

  • наложенный на видео вердикт Fake/No Fake;
  • текстовое сообщение с указанием вероятности подделки (в процентах);
  • отображаемые в командной строке покадровые оценки с указанием степени вероятности фейка.

«Стопроцентный результат не гарантирован: у любой программы бывают неточности, — подчеркивают разработчики. — Это связано и с особенностями мимики человека на видео, и с характеристиками самого видео: иногда такие ролики специально делают с плохим качеством, чтобы труднее было определить подделку».

В настоящее время создатели антифейковой программы завершают оформление свидетельства о госрегистрации продукта, правообладателем которого является ДГТУ. По мнению разработчиков, их инструмент будет востребован в сфере цифровой безопасности, в том числе у создателей бесконтактных систем контроля доступа и разблокировки гаджетов.

«Программа по выявлению фейкового видеоконтента станет одним из модулей будущего программного комплекса по противодействию деструктивной информации, — делится дальнейшими планами научный руководитель проекта, профессор Лариса Черкесова. — Эта система позволит охватить все виды мультимедийного контента в интернете: тексты — как печатные, так и рукописные, графические изображения, включая фото- и видеофайлы, а также аудиофайлы».

Из зарубежных разработок такого плана наиболее интересен, пожалуй, FakeCatcher разработки Intel — серверный детектор, способный распознавать дипфейк-видео в реальном времени с точностью до 96%. От большинства аналогов его отличает подход: он ищет признаки, свойственные человеку, а не отличия, выдающие подлог.

Кибершпионы в России переключились на НИОКР и инженерные предприятия

Доля кибератак на российские организации, совершаемых с целью шпионажа, заметно выросла. По данным портала киберразведки BI.ZONE Threat Intelligence, в 2025 году на шпионские операции пришлось уже 37% атак (против 21% годом ранее). Иными словами, если раньше шпионской была примерно каждая пятая атака, то теперь — уже почти каждая третья.

При этом госсектор остаётся для таких группировок целью номер один. На органы государственного управления приходится 27% атак шпионских кластеров.

Но интерес злоумышленников всё чаще смещается и в сторону науки и технологий. Доля атак на организации, связанные с НИОКР, за год выросла вдвое — с 7% до 14%.

Как отмечает руководитель BI.ZONE Threat Intelligence Олег Скулкин, рост доли шпионских атак почти в полтора раза стал одним из ключевых трендов 2025 года. По его словам, специалисты наблюдают более 100 кластеров, нацеленных на Россию и страны СНГ, и около 45% из них — это именно шпионские группировки.

Интересно, что такие кластеры сильно различаются по уровню подготовки. В одних случаях злоумышленники применяют технически сложные инструменты, но выдают себя плохо составленными фишинговыми письмами. В других — атаки относительно простые, зато адаптированы под локальный контекст и выглядят максимально правдоподобно.

Так, во второй половине декабря 2025 года группировка Rare Werewolf атаковала научно-исследовательское и производственное предприятие оборонно-промышленного комплекса. Жертве отправили письмо якобы с коммерческим предложением на поставку и монтаж сетевого оборудования — от имени сотрудника научно-производственного центра беспилотных систем.

Во вложении не было классических зловредов. Вместо этого использовались легитимные инструменты: AnyDesk для удалённого доступа, 4t Tray Minimizer для скрытия окон и утилита Blat — для незаметной отправки похищенных данных. Такой подход позволяет дольше оставаться незамеченными и обходить системы защиты.

Впрочем, легитимными программами дело не ограничивается. Почти все шпионские кластеры активно применяют зловред собственной разработки. Новые самописные инструменты помогают обходить средства защиты и закрепляться в инфраструктуре на длительное время.

Кроме того, такие группировки, как правило, не стеснены в ресурсах. Они могут позволить себе покупку дорогостоящих эксплойтов, включая 0-day. Ранее специалисты BI.ZONE фиксировали атаки кластера Paper Werewolf, который, предположительно, приобрёл на теневом форуме эксплойт к уязвимости в WinRAR за 80 тысяч долларов.

Судя по динамике, кибершпионаж становится всё более системным и профессиональным — и явно не собирается сдавать позиции.

RSS: Новости на портале Anti-Malware.ru