Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Команда исследователей продемонстрировала новую атаку по сторонним каналам и дала ей интересное имя — «Freaky Leaky SMS». Особенность этого вектора — отслеживание тайминга отчетов о доставке СМС-сообщений для определения местоположения получателя.

Как известно, за обработку отчетов о доставке СМС-сообщений отвечает Центр обслуживания коротких сообщений (SMSC). Его задача — уведомить отправителя о статусе сообщения: доставлено, отклонено, принято, истек срок, не удалось доставить и т. п.

Несмотря на наличие маршрутизации, задержек в обработке и множества сетевых узлов, у мобильных сетей присутствует определенные физические характеристики, позволяющие просчитать тайминг.

Исследователи разработали МО-алгоритм, анализирующий временные интервалы между СМС-ответами. Такие интервалы могут выдать геолокацию получателя с точностью до 96% для местоположений в разных странах, а также с 86% — для двух локаций в пределах одной страны.

Чтобы воспользоваться этим вектором, условному злоумышленнику придется сначала собрать ряд данных и четко связать между собой отчеты о доставке СМС-сообщений и известное местоположение своей цели.

 

Во-первых, атакующий должен отправить несколько СМС-сообщений жертве. Их можно замаскировать под рекламные материалы, которые получатель с большой долей вероятности проигнорирует, либо использовать так называемые «бесшумные» сообщения. Последний вариант — это послания «type 0», в которых отсутствует контент, такие СМС-сообщения не выводят уведомления на устройстве получателя.

В ходе исследования специалисты использовали ADB для отправки 20 бесшумных сообщений. Они доставлялись каждый час на протяжении трех дней. Принимающие тестовые устройства были расположены в США, ОАЭ и семи европейских странах. Таким способом экспертам удалось охватить десять различных операторов и разные технологии связи.

После этого исследователи наблюдали за отчетами о доставке и собирали данные с сигнатурами геолокации. Далее все эти сведения скармливались модели машинного обучения. МО-алгоритм использовал в общей сложности 60 узлов (10 входов, 10 выходов, 40 скрытых). Полученная в обучении информация также включала местоположение приема, состояние подключения, тип сети, расстояние до приемника и пр.

 

Как выяснили (PDF) специалисты, их модель способна обеспечить высокую точность:

Yandex B2B Tech добавила ИИ-инструменты для поиска уязвимостей в коде

Yandex B2B Tech обновила платформу для разработки SourceCraft, добавив новые ИИ-инструменты для работы с уязвимостями и командной разработки. Обновления уже доступны всем пользователям и ориентированы не только на индивидуальные проекты, но и на работу с крупными корпоративными кодовыми базами.

Главное новшество — усиление блока безопасности. На платформе появился ИИ-агент на базе SourceCraft Code Assistant, который автоматически проверяет код на уязвимости и оформляет найденные проблемы в виде карточек.

В каждой из них ИИ помогает разобраться, насколько риск серьёзный, каким образом уязвимость может быть использована и как её корректно исправить — с примерами безопасного кода. За счёт этого анализ, который раньше мог занимать часы и требовать участия профильных специалистов, теперь укладывается в минуты.

Дополнительно в SourceCraft появился центр контроля уязвимостей с интерактивными дашбордами. Они показывают, какие системы затронуты, какие типы уязвимостей встречаются чаще всего и где сосредоточены зоны повышенного риска. Это упрощает приоритизацию и помогает смотреть на безопасность не фрагментарно, а в масштабе всей разработки.

Обновления затронули и командную работу. ИИ-агент SourceCraft Code Assistant теперь автоматически формирует краткие описания изменений в коде, чтобы разработчикам было проще ориентироваться в правках коллег. Также в платформе появилась возможность фиксировать состав версий ПО и отслеживать их готовность, что делает процесс разработки более прозрачным и упрощает координацию между командами.

В Yandex B2B Tech отмечают, что в крупных организациях с сотнями разработчиков и тысячами репозиториев критически важны прозрачность рисков и управляемость процессов. По словам руководителя платформы SourceCraft Дмитрия Иванова, в дальнейшем платформа будет развиваться в сторону мультиагентных ИИ-помощников, которые смогут учитывать контекст всей компании, помогать командам взаимодействовать друг с другом и показывать руководству, как технические уязвимости влияют на бизнес-процессы.

RSS: Новости на портале Anti-Malware.ru