Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Команда исследователей продемонстрировала новую атаку по сторонним каналам и дала ей интересное имя — «Freaky Leaky SMS». Особенность этого вектора — отслеживание тайминга отчетов о доставке СМС-сообщений для определения местоположения получателя.

Как известно, за обработку отчетов о доставке СМС-сообщений отвечает Центр обслуживания коротких сообщений (SMSC). Его задача — уведомить отправителя о статусе сообщения: доставлено, отклонено, принято, истек срок, не удалось доставить и т. п.

Несмотря на наличие маршрутизации, задержек в обработке и множества сетевых узлов, у мобильных сетей присутствует определенные физические характеристики, позволяющие просчитать тайминг.

Исследователи разработали МО-алгоритм, анализирующий временные интервалы между СМС-ответами. Такие интервалы могут выдать геолокацию получателя с точностью до 96% для местоположений в разных странах, а также с 86% — для двух локаций в пределах одной страны.

Чтобы воспользоваться этим вектором, условному злоумышленнику придется сначала собрать ряд данных и четко связать между собой отчеты о доставке СМС-сообщений и известное местоположение своей цели.

 

Во-первых, атакующий должен отправить несколько СМС-сообщений жертве. Их можно замаскировать под рекламные материалы, которые получатель с большой долей вероятности проигнорирует, либо использовать так называемые «бесшумные» сообщения. Последний вариант — это послания «type 0», в которых отсутствует контент, такие СМС-сообщения не выводят уведомления на устройстве получателя.

В ходе исследования специалисты использовали ADB для отправки 20 бесшумных сообщений. Они доставлялись каждый час на протяжении трех дней. Принимающие тестовые устройства были расположены в США, ОАЭ и семи европейских странах. Таким способом экспертам удалось охватить десять различных операторов и разные технологии связи.

После этого исследователи наблюдали за отчетами о доставке и собирали данные с сигнатурами геолокации. Далее все эти сведения скармливались модели машинного обучения. МО-алгоритм использовал в общей сложности 60 узлов (10 входов, 10 выходов, 40 скрытых). Полученная в обучении информация также включала местоположение приема, состояние подключения, тип сети, расстояние до приемника и пр.

 

Как выяснили (PDF) специалисты, их модель способна обеспечить высокую точность:

Кибершпионы в России переключились на НИОКР и инженерные предприятия

Доля кибератак на российские организации, совершаемых с целью шпионажа, заметно выросла. По данным портала киберразведки BI.ZONE Threat Intelligence, в 2025 году на шпионские операции пришлось уже 37% атак (против 21% годом ранее). Иными словами, если раньше шпионской была примерно каждая пятая атака, то теперь — уже почти каждая третья.

При этом госсектор остаётся для таких группировок целью номер один. На органы государственного управления приходится 27% атак шпионских кластеров.

Но интерес злоумышленников всё чаще смещается и в сторону науки и технологий. Доля атак на организации, связанные с НИОКР, за год выросла вдвое — с 7% до 14%.

Как отмечает руководитель BI.ZONE Threat Intelligence Олег Скулкин, рост доли шпионских атак почти в полтора раза стал одним из ключевых трендов 2025 года. По его словам, специалисты наблюдают более 100 кластеров, нацеленных на Россию и страны СНГ, и около 45% из них — это именно шпионские группировки.

Интересно, что такие кластеры сильно различаются по уровню подготовки. В одних случаях злоумышленники применяют технически сложные инструменты, но выдают себя плохо составленными фишинговыми письмами. В других — атаки относительно простые, зато адаптированы под локальный контекст и выглядят максимально правдоподобно.

Так, во второй половине декабря 2025 года группировка Rare Werewolf атаковала научно-исследовательское и производственное предприятие оборонно-промышленного комплекса. Жертве отправили письмо якобы с коммерческим предложением на поставку и монтаж сетевого оборудования — от имени сотрудника научно-производственного центра беспилотных систем.

Во вложении не было классических зловредов. Вместо этого использовались легитимные инструменты: AnyDesk для удалённого доступа, 4t Tray Minimizer для скрытия окон и утилита Blat — для незаметной отправки похищенных данных. Такой подход позволяет дольше оставаться незамеченными и обходить системы защиты.

Впрочем, легитимными программами дело не ограничивается. Почти все шпионские кластеры активно применяют зловред собственной разработки. Новые самописные инструменты помогают обходить средства защиты и закрепляться в инфраструктуре на длительное время.

Кроме того, такие группировки, как правило, не стеснены в ресурсах. Они могут позволить себе покупку дорогостоящих эксплойтов, включая 0-day. Ранее специалисты BI.ZONE фиксировали атаки кластера Paper Werewolf, который, предположительно, приобрёл на теневом форуме эксплойт к уязвимости в WinRAR за 80 тысяч долларов.

Судя по динамике, кибершпионаж становится всё более системным и профессиональным — и явно не собирается сдавать позиции.

RSS: Новости на портале Anti-Malware.ru