ИИ научился вычислять потенциальных керченских стрелков

ИИ научился вычислять потенциальных керченских стрелков

ИИ научился вычислять потенциальных керченских стрелков

Разработки российских специалистов уже сейчас могут выявлять потенциально опасных для общества лиц по их поведению в интернете, заявляет директор по инновациям IT-кластера Физтехпарк в Долгопрудном Сергей Ручьев.

В частности, такие задачи может решать нейросеть, разрабатываемая в содружестве с экспертами платформы “Умная страна” на базе Центра Нейроинноваций. Нейросеть уже научилась не просто отслеживать опасный контент в интернете и соцсетях, но и людей, которые попадают под его влияние.

Подобные заключения делаются на основе целого ряда анализируемых параметров, таких как вовлеченность, просмотры определенного контента и время проводимое за этим, перепосты, комментарии и т.п.

Кроме того, базовый алгоритм унифицированного массива данных может анализировать и показатель уровня жизнестойкости подростка (hardiness) - ключевой параметр определения потенциальных серийных убийц, садистов и самоубийц.

Низкие и критически низкие показатели жизнестойкости до сих пор были для клиницистов и высокопрофессиональных психологов сигналом к опасному и неизбежному эмоциональному выпаду (взрыву).

Сложность определения предельно низких колебаний hardiness в скрытом характере переживаний, как это было с 18-летним Владиславом Росляковым, совершившим массовое убийство учащихся Керченского политехнического колледжа.

«В случае «керченского стрелка», он, несомненно, был бы выявлен и определенным образом маркирован нейросетью. Но на сегодняшний день проблема заключается в том, что подобными системами пока  никто из серьезных структур не интересуется», — объясняет Сергей Ручьев.

Эксперты: за год число вредоносных opensource-компонентов возросло в 11 раз

В 2025 году в компании CodeScoring зарегистрировали 457 тыс. вредоносных библиотек с открытым исходным кодом — в 11 раз больше, чем в предыдущем году. Зафиксировано также 14 тыс. новых уязвимостей в таких компонентах.

По словам специалистов, сохраняют актуальность и более ранние неприятные находки — к примеру, RCE-уязвимость Log4Shell, которая все еще присутствует в 15 тыс. сторонних библиотек. Публикация подобных пакетов грозит атаками на цепочку поставок.

В уходящем году также зафиксировано появление новой, еще более опасной угрозы — самоходного червя Shai Hulud, способного создавать новые репозитории и воровать конфиденциальные данные с CI/CD-платформ.

В связи с бурным ростом популярности ИИ объявился новый вектор атаки — slopsquatting: злоумышленники начали использовать склонность больших языковых моделей (БЯМ, LLM) к галлюцинациям для внедрения в легитимные проекты небезопасного кода.

Из-за этой особенности умный помощник по разработке может ошибиться и вместо легитимной библиотеки предложить для использования вредоносную со схожим названием. По данным CodeScoring, в России ИИ-ассистентов применяют 30% разработчиков, и потенциально опасные галлюцинации происходят у LLM в 20% случаев.

Чтобы защититься от атак на цепочку поставок, эксперты советуют вести тщательный учет компонентов, используемых для сборки софта, при установке библиотек выставлять запрет на исполнение скриптов, а также следовать стандарту ГОСТ Р 56939-2024 и активнее внедрять технологии безопасной разработки.

RSS: Новости на портале Anti-Malware.ru