Сеть ZenCash стала очередной жертвой атаки 51 % — похищено $550 тыс

Сеть ZenCash стала очередной жертвой атаки 51 % — похищено $550 тыс

Сеть ZenCash стала очередной жертвой атаки 51 % — похищено $550 тыс

Вчера стало известно, что сеть ZenCash стала очередной жертвой атаки 51%. Атакующему удалось успешно провести вредоносную схему «double spend» к двум крупным транзакциям (13 000 и 6 600 ZEN), что привело к потере компанией более 550 000 долларов США по текущему курсу.

Сама атака произошла 2-го июня, исходя из сообщения официальных представителей ZenCash, длилась на менее четырех часов. Ресурс 51Crypto подсчитал теоретические затраты злоумышленника на эту атаку 51% — она стоила киберпреступнику около 30 000 долларов.

Как пишет ZenCash в своем официальном заявлении, znkMXdwwxvPp9jNoSjukAbBHjCShQ8ZaLib — адрес, принадлежащий атаковавшему сеть лицу.

Разработчики пишут, что повторение этой атаки маловероятно, однако посоветовали пользователям хранить свои деньги в надежных кошельках, которые хорошо защищены.

«Команда Zen продолжит мониторинг сети и проведет анализ атакованной биржи. Вся собранная информация будет предоставлена соответствующим органам», — пишут представители ZenCash.

В апреле сети Electroneum и Verge пострадали от атаки 51%. Атака 51% — термин, обозначающий, что в распоряжении атакующего должны находиться мощности большие, чем у всей остальной сети, своего рода «контрольный пакет» генерирующих мощностей.

А в конце мая стало известно, что Bitcoin Gold (BTG) также пострадала от 51%. Злоумышленникам удалось похитить $17.5 миллионов у криптовалютных бирж. По словам команды Bitcoin Gold, преступники атаковали биржи, а не отдельных пользователей.

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru