Легко взламываемые модели ИИ показывают, что меры защиты не работают

Легко взламываемые модели ИИ показывают, что меры защиты не работают

Легко взламываемые модели ИИ показывают, что меры защиты не работают

В новом отчете британского Института безопасности ИИ говорится, что основные модели искусственного интеллекта легко взламываются, а меры их защиты не работают.

Четыре общедоступные большие языковые модели (Large Language Models, LLM) чрезвычайно уязвимы для «джейлбрейка» — эксплуатации багов, позволяющей заставить модели ИИ выполнять то, что разработчики им делать запретили.

LLM тщательно настраиваются для безопасного публичного пользования. Их обучают избегать вредных реакци1 и токсичных результатов, используя меры предосторожности.

Однако исследователи обнаружили возможность обойти защиту с помощью простых атак.

В качестве наглядного образца можно привести инструкцию для пользователя, согласно которой система должна начинать свой ответ со слов, которые предполагают выполнение вредоносного запроса, например: «Конечно, я рад помочь».

Специалисты использовали подсказки в соответствии с отраслевым стандартом контрольного тестирования. В ходе исследования специалисты обнаружили, что некоторым моделям ИИ даже не требовался джейлбрейк, чтобы выдать нестандартный ответ. 

А вот когда использовался джейлбрейк, каждая модель отвечала как минимум один раз из пяти попыток. Три модели в 100% случаев давали ответы на вводящие в заблуждение запросы.

Анализ протестированных моделей показал, что они остаются уязвимы для базовых джейлбрейков, а некоторые LLM выдают вредные результаты без каких-либо попыток обойти защиту. Какие именно модели были исследованы, специалисты не сообщили.

В институте также оценили возможности моделей ИИ выполнять определенные задачи для проведения основных методов кибератак. Несколько LLM смогли решить задачи, которые исследователи назвали «хакерскими на уровне средней школы», но немногие смогли выполнить более сложные действия «университетского уровня».

В Intel TDX обнаружены уязвимости с риском утечки данных

Intel вместе с Google провела масштабный аудит технологии Trust Domain Extensions (TDX), процессе которого обнаружилось немало проблем. За пять месяцев работы специалисты выявили пять уязвимостей, а также 35 багов и потенциальных слабых мест в коде.

TDX — это аппаратная технология «конфиденциальных вычислений». Она предназначена для защиты виртуальных машин в облаке даже в том случае, если гипервизор скомпрометирован или кто-то из администраторов действует недобросовестно.

По сути, TDX создаёт изолированные «доверенные домены» (Trust Domains), которые должны гарантировать конфиденциальность и целостность данных.

Проверкой занимались исследователи Google Cloud Security и команда Intel INT31. Они анализировали код TDX Module 1.5 — ключевого компонента, отвечающего за работу механизма на высоком уровне. В ход пошли ручной аудит, собственные инструменты и даже ИИ.

В результате обнаружены пять уязвимостей (CVE-2025-32007, CVE-2025-27940, CVE-2025-30513, CVE-2025-27572 и CVE-2025-32467). Их можно было использовать для повышения привилегий и раскрытия информации. Intel уже выпустила патчи и опубликовала официальное уведомление.

Самой серьёзной Google называет CVE-2025-30513. Она позволяла злоумышленнику фактически обойти механизмы безопасности TDX. Речь идёт о сценарии, при котором во время миграции виртуальной машины можно было изменить её атрибуты и перевести её в режим отладки.

Это открывало доступ к расшифрованному состоянию виртуальной машины, включая конфиденциальные данные. Причём атаку можно было провести уже после процедуры аттестации, когда в системе гарантированно присутствуют важные материалы.

Google опубликовала подробный технический отчёт (PDF) объёмом 85 страниц, а Intel — более краткое описание результатов совместной работы.

RSS: Новости на портале Anti-Malware.ru