В Пензенском университете создали антивирус с ИИ

В Пензенском университете создали антивирус с ИИ

В Пензенском университете создали антивирус с ИИ

Созданный в Пензенском университете (ПГУ) антивирус использует нейросети и машинное обучение и не требует постоянного подключения к интернету. Разработку планируют завершить в этом году, а в ноябре подать заявку на сертификацию.

Из рассказа руководителя проекта, которого цитируют «Известия», можно понять, что вооруженный ИИ защитный софт способен предугадывать действия пользователя, и его можно подстроить под конкретные условия и задачи. Пока готова только версия для Windows, умеющая распознавать трояны, руткиты и нелегальные майнеры.

Для выявления фактов заражения используются два вида анализа:«нейросетевой» и «нейросигнатурный». В первом случае написанная на Python нейросеть оценивает работу кода, выполняя сравнение с известными ей алгоритмами поведения вредоносов.

Второй компонент определяет угрозы, используя ИИ в комбинации с традиционным сигнатурным анализом. Авторы проекта исходили из того, что написанный с нуля зловред — большая редкость, вирусописатели обычно в той или иной степени используют наработки коллег по цеху.

По замыслу, созданный в стенах ПГУ антивирус можно будет использовать как в корпоративном окружении, так и в индивидуальном порядке. Продукт планируют распространять по подписке.

Заметим, без связи с Сетью (не получая обновлений) такой софт сможет детектировать только вредоносные программы с заимствованиями, притом теми, с которыми он уже сталкивался. Впрочем, приведенное репортером описание слишком лаконично и туманно, стоит подождать более конкретных дополнений.

Внедрение ИИ-технологий — новомодный и прогрессивный тренд, в России ему следуют многие крупные компании, включая представителей сферы ИБ, а Минцифры считает курс на ИИ одним из своих приоритетов. Что касается антивирусной защиты, комментатор из UserGate отметил, что применение машинного обучения способно повысить эффективность детектирования до 96%.

Как бы то ни было, подобные инструменты нельзя оставлять без контроля: нейросети не всегда выдают достоверную информацию, результаты желательно проверять. Им можно доверить черновую работу для ускорения ИБ-процессов и повышения эффективности, а принятие решений оставить за оператором.

30-летняя уязвимость в libpng поставила под удар миллионы приложений

Анонсирован выпуск libpng 1.6.55 с патчем для опасной уязвимости, которая была привнесена в код еще на стадии реализации проекта, то есть более 28 лет назад. Пользователям и разработчикам советуют как можно скорее произвести обновление.

Уязвимость-долгожитель в библиотеке для работы с растровой графикой в формате PNG классифицируется как переполнение буфера в куче, зарегистрирована под идентификатором CVE-2026-25646 и получила 8,3 балла по шкале CVSS.

Причиной появления проблемы является некорректная реализация API-функции png_set_dither(), имя которой было со временем изменено на png_set_quantize(). Этот механизм используется при чтении PNG-изображений для уменьшения количества цветов в соответствии с возможностями дисплея.

Переполнение буфера возникает при вызове png_set_quantize() без гистограммы и с палитрой, в два раза превышающей максимум для дисплея пользователя. Функция в результате уходит в бесконечный цикл, и происходит чтение за границей буфера.

Эту ошибку можно использовать с целью вызова состояния отказа в обслуживании (DoS). Теоретически CVE-2026-25646 также позволяет получить закрытую информацию или выполнить вредоносный код, если злоумышленнику удастся внести изменения в структуру памяти до вызова png_set_quantize().

Уязвимости подвержены все версии libpng, с 0.90 beta (а возможно, и с 0.88) до 1.6.54. Ввиду широкого использования библиотеки пользователям настоятельно рекомендуется перейти на сборку 1.6.55 от 10 февраля 2026 года.

RSS: Новости на портале Anti-Malware.ru